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ABsTrACT. This paper is concerned with the question of absolute continuity of
distributions py of random series > +A" given as a projection of shift-ergodic
probability measures p on the sequence space {:I:l}N and the answer’s depen-
dence upon A € (%, 1). In [8], Y. Peres and B. Solomyak proved that given a
shift-ergodic probability measure p on {£1}Y with Kolmogorov-Sinai entropy
h, its projection p is absolutely continuous for Leb-a.e. A € (27", a), where
a = 0.668475. It is conjectured that this is true for Leb-a.e. A\ € (Q*h,l).
Employing the techniques developed by Solomyak and Peres along with a de-
composition of p allows significantly extending the area of almost-sure abso-
lute continuity for measures with high entropy. In Particular, the conjecture
is confirmed for Markov measures satisfying some conditional entropy bounds,

. . 1-—
such as the Markov measures given by marginal ( b p ) for any

1-p p
p € [0.433,0567].
In addition, general properties of the projection of ergodic measures are estab-
lished - Law of pure types and the set of A’s corresponding to singular measures
being Gs.
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1.I. Setting and Background. Consider the sequence space 2 = {il}N equipped

with the shift map o :

(w1,wa,...) — (w2,ws, ) and the metric d (w,7) = 2 lwATl,

|w A 7| = ming {wy # 7 }. Given a parameter A € (0,1) we define the projection
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map 7y : 2 — R by:
m (W) = Z W A"
n=0

This map is clearly continuous and measurable. Given some measure y on §2 we
denote its projection by u) = myu. We are concerned with the question -
For which p and X is py absolutely continuous with respect to Lebesque measure L9

A first answer can be given by considering the geometry of suppuy. By definition,
the projected measure is supported on 7 (2) which can be viewed as the attractor
of the IFS @y = {2, ¢} } with 2 (z) = Az £ 1, since:

cpi (ma (w)) =14 an)\"+1

n=0

and consequently:
P2 (ma () Ul (ma () = ma ([1]) U ([+1]) = ma ()

where we use the notation [i], for any i € {:I:l}k, to represent the corresponding
cylinder set [i] = {w € Q| wiwa...w, = i}.
In the case where \ € (O, %), the IFS @, and its attractor satisfy:

P2 (M () N (mr (2)) = 0
a condition called strong separation. This condition implies the Hausdorff dimen-
sion of my (£2) is equal to the similarity dimension of @) = @ < 1 (see theorem
5.16 in [4]), meaning p is supported on a set of zero Lebesgue measure. Therefore,
all measures on ) will project onto singular measures by 7, for any A € (0, %)
-1 1 |9

The question remains - what happens when X € [§,1) and my (Q) = [ﬂ’ x|

1.II. Bernoulli Convolutions'. The case where y is taken to be the Bernoulli

measure v = (1, %)N on Q has been fruitfully studied since the 1930’s. In this

case v is the infinite convolution of the measures 3 (§_x» + dxn), hence the name
‘Infinite Bernoulli Convolutions’. Denote by S the set of A € (%,1) for which

i .. . .
vy = mv? is singular. The only elements known to be found in S| are reciprocals of

Pisot numbers in (1,2)%. The proof is due to Erdés (1939) using harmonic analysis.
It is conjectured that these are the only elements of S| . The first important result
in that direction is also due to Erdos (1940) where he proved that S, N(a, 1) has zero
Lebesgue measure for some a < 1. Kahane later indicated the argument actually
implies that the Hausdorff dimension of S| N(a, 1) tends to 0 as a 1. In [11], Boris
Solomyak showed S, is of zero Lebesgue measure using a certain transversality
property of the family of functions F = {f (z) = > 5" ara® |a, € {£1,0}} and a
sub-family. Solomyak together with Yuval Peres later published a simpler proof [7].
Recently Pablo Shmerkin[9], relying on work by Michael Hochman|[3], proved the
set S is actually of Hausdorff dimension 0, the strongest result yet.

Both the Erdés-Kahane and the Hochman-Shmerkin approaches rely heavily upon

1
the infinite convolution structure of 7, something one cannot assume when dealing

LThe historical background goes along the lines of [6] with some recent updates.
2Those algebraic numbers whose Galois conjugates are of modulus< 1
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with the projection of a general ergodic measure. This paper will employ the
techniques developed by Peres and Solomyak.

1.ITI. General Ergodic Measures. In [8], Peres and Solomyak effectively proved
the following theorem (in a much broader context):

Theorem. Given a o-ergodic probability measure i on Q, puy is:
(1) absolutely continuous for L-a.e. X € (27"+(7) 0.668475)
(2) singular for all X < 27 "()

The value 0.668475 is due to the transversality property. This property will be
discussed in detail in section 5. We will give the proof of claim 2 here and deduce
claim 1 later, as a consequence of theorem 3.2.

Proof. Using the Shannon-McMillan-Breiman theorem we know that for p-a.e. w €
Q:

tim ! log (s ([],.)) = . (0)

n— oo
where [w],, = [w;...w,]. Hence by Billingsley’s lemma the Hausdorff dimension of
in Q is equal to hy (o).
Notice that the map m is (—log\) — Holder since:
|7a (W) = ma (7)] < CATIM < O (d (w, 7))~ 108

Using this fact we receive:

-1 h, (o)
di < ——di =t
AN = log A L log A
When A < 27"(?) we have dimy uy < 1 and consequently sy is singular. O

It is naturally conjectured that:

Conjecture. Given a o-ergodic probability measure p, its projection py is abso-
lutely continuous for L-a.e. \ € (2_}“‘(‘7), 1).

In [8] the authors tackle this conjecture for the biased Bernoulli convolutions,
where p is taken to be the Bernoulli measure v? = (p, 1 fp)N for some p € (0, 1),
and prove the following theorem:

Theorem. 1} is absolutely continuous for L-a.e. \ € (pp (1 fp)l_p , 1), for any
1271 3
pe (53]
2. Law oF PURE TYPES

In question of absolute continuity, a measure is said to be of pure type if its
Lebesgue decomposition with respect to £ is trivial, i.e. it is either absolutely
continuous or singular. Jessen and Wintner (1935) showed that any convergent
infinite convolution of discrete measures is of pure type. In [6] is given a proof that
any self-similar probability measure on R¢ is of pure type. We give two proofs to
the following proposition:

3Note that ke (0) = H (p,1 —p) = —plogp — (1 — p)log (1 — p)
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Proposition 2.1. Given a o-ergodic probability measure p on  and some A\ €
(0,1), the projected measure uy is of pure type with respect to Lebesgque measure,
i.e. puy < L orpuy L L.

The following proofs can be extended to suit a wider variety of IFS symbols
space projections and can also be adapted to proving pure type with respect to any
a-dimensional Hausdorff measure, as been done in 6.1.

Elementary Proof.

Proof. Denote @ = {¢*, 3} with ¢} (z) = Az + 1. assume there exists a set
A C R with py (A) > 0 and £(A) = 0. For every finite sequence i € {£1}" the
map @} o...o@} is affine thus giving £ ((¢7, o ... 0 ¢} ) (A)) = 0 and consequently:

clU U (phowogd)@)|=0

n ode{—1,1}"
On the other hand:

U U (@howedd)@)=m <U o " (ﬂ{lA)> =A

n ie{-1,1}"

Since 7r;1A C Q is a set of positive p-measure, by ergodicity:
(U i) -
n
meaning py (A4’) =1 and L(A") =0. O

Sketch of Proof Using the Density Function.
This proof is due to Michael Hochman.

Definition. The upper 1-dimensional density of a measure v at x € R? is:

B

where B, (x) is the closed ball of radius r around .

Denote:
At = {we 2| D fnm (@) < oof =530 (D7) (0.00)
Sketch of proof: Using the affine nature of ¢} and the Lebesgue-Besicovitch density
theorem (see 2.14 in [5]) it can be shown that for p-a.e. w €
DY (pa, mw) > Cy (W) - DY (pa, ma(1w))

Df (i, maw) > C— () - DY (ux, a(~ 1)
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where the functions Cy, C_ are positive p-a.e., proving 0 "t Al = AL . The ergod-
m

icity of p implies either:
p(AL)=0 = u L L

or:
u(A})o)zl = <L

A full proof is given in appendix 6.1

3. ENTROPY AND ABSOLUTE CONTINUITY

We begin the main proof with some notations: P = {[—1],[1]} is the generating
partition for (Q, o/,0) and 7, = V?;Ol o~"P. Given a set of indices E C N we
denote:

g =\ o"'P
icE
the o-algebra controlling all the F-indices and:

(oo}

FE = {f(x) = Zakxk E_F‘Vk ekl ag :0}
k=0

the corresponding sub-family of:

F = {f(:c) =Y apat | € {il,O}}
k=0

with all E-indices set to O.

F is said to be Ny-periodic if Vi e N ¢ €¢ E <= i+ Ny € E. We refer to the
empty set () as 1-periodic, with Fy = F.

Definition 3.1. Given a set of indices E C N, we say the interval I C [1,1] is

an interval of d-transversality for the family of functions Fg if for any sub-interval
Io =[Mo, M1] € I and all ¢ € Fg and r > 0:

Li{zely| o) <r} <252 "r
where we denote A (377 apz®) = infy (a, # 0) € NU {oo}.

Remark. This definition of §-transversality is different than the one used by Peres
and Solomyak in [7]. This is only in order to postpone some technicalities arising
from fixing the E-indices to section 5 where we show how the original condition of
O-transversality implies our definition.

3.I. Main Theorem.

Theorem 3.2. Let E C N be an Ny-periodic set of indices with I an interval of
d-transversality for the family Fg. Let p be a probability measure on Q) with:

. -1
lllglo - Ny log (1" (Wlin,)) = @

for p-a.e. w € Q) where p = fuffEdu (w) is the decomposition of p with respect to
the o-algebra /r. Then uy is absolutely continuous for L-a.e. X € (2%, 1)N 1.
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Proof. We will use a decomposition of py induced by the decomposition of p:

fix =/§2M§{E"”du (w)

where "% = 7y u " . If we show that for L-a.e. A € I), = (27",1)N1I the measure
ui{E “ is absolutely continuous for p-a.e. w € Q then for all such A the measure uy

is also absolutely continuous. Consider the function:

o ,w
9 BT
D, (\,w,7) = lim inf £2 (Br (ma (1))
™0 2r

For any fixed A and w, D, (A, w,-) is the lower density function of uf{E’“’. The
measure ui’{E’w is absolutely continuous if and only if D, (A, w,-) < oo pi{E"‘)—
a.e. (see theorem 2.12 in [5]). Therefore it would suffice to show that for L-a.e.
A € Iy the function D, (A, w,T) receives finite value for p-a.e. w and ufE’w—a.e.
7 € . Using Fubini’s theorem and the measurability of D, (\,w,7) : I, xQxQ —

R* U {oo} (established in lemma 6.6) we can reduce to proving that for u-a.e. w:
D, (\w,T) < o0

for ,uffE’“’—a.e. 7 and L-a.e. A € I,. As assumed:

-1
(3.1) lim

1500 1 - NO log (Mf){E ([W]l-No)) 2 @

for all w in a set €' of full y-measure. For p-a.e. w, 7% (Q') = 1 meaning there
exists a set Q" of full y-measure for which all w in Q" | satisfy property 3.1 for
pw¥e-a.e. 7. Fix such an w € Q.

Using Egoroff’s theorem there exists a sequence of sets A,, C Q with:

n=1

for which the convergence in (3.1) is uniform®. Assuming I;, # () we denote \g =
inf I;, and for all 0 < & < |I1], Ao,e = Ao + € and I, = I, N [Age, 1]. Using Fatou’s
lemma and Fubini’s theorem we calculate:

1
/ / D, (\,w,T) du® (1) d\ < liminf — / / M”;{E’“’ (B, (7 (7)) dp® (1) d\ =
cJA, 15 Ja,

N0 2r
1
:1iminf2—/ / /X
N0 ' i A, JQ {(T,T’)
L1
= liminf — Liel;
r\0 2r A, JQ

Recall at this point that the measure ;7 is supported on [w] 7 the w-atom with

[ma(T)—ma(r")|<r

}du‘fE (") du (r) d\ =

2 (7) — ma (7)) < } due (') du (7) = ()

respect to </p°, meaning that for y##-a.e. 7 Vk € E 73, = w which consequently

Ymeaning that V8 < o 3k VI > k ﬁ log (uf,{E ([w]l‘NO)) >

5oy is clearly a countably generated o-algebra
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assures 1 (my (1) — mx (7')) € Fpg. Due to the -transversality on I we insert:

L{/\ I | |mx (1) —ma (7)) < r} —

:L‘{)\el,i

1 _
HEG RN B e

to conclude:

x) < (26)_1/ / A(;;\(WA(T)—WA<T/))dufE (7_/) duifE (1) =
- / [l e 7y aete ) =
- (20 AL ([7)) dusle () <
/nlz; 0, M Hroy
< (26)71 Z )‘05 / Z)‘_l Mo w ]l NO) d/‘i{E (T)

seke An =0
s<Ng

By the definition of A,, there exists a k for which all [ > k£ admit:

-1
v Jog (157 ([T, ) > B> —log Mo
©4V0

assuring:
oo
—1-N —1-Noo—B-1-
ZA wl® ([rhy,) < C+ > Agihog=ftno
I=k+1
o0
— C+ Z 2_l‘N0(B+10g)\0,5) < C/ < 00
I=k+1

and consequently:
/ / D, (\w,T) dufE (1) d\ < o0
R

Taking € \, 0 will give D, (A\,w,7) < oo for L-a.e. X € I} and pZE-ae. T € A,.
This being true for all n concludes the proof. O

Corollary 3.3. Let E C N be an Ny-periodic set of indices with I an interval of
d-transversality for the family Fgr. Let u be o-ergodic with N%)h/t (UNO\%E) > a,
then the projection py is absolutely continuous for L-a.e. X € (27, 1)N 1.

Proof. In the case where y is also o™N°-ergodic, the conditional Shannon-McMillan-

Breiman theorem for the m.p.s. (€2, u, 0™0)% assures the conditions of theorem 3.2
are fulfilled, thus proving the claim.

When g is not o™No-ergodic, we can decompose 4 to its ergodic components. Let
A C Q be some non-trivial oNo-invariant set. p is o-ergodic meaning:

n <kf_joa—kA> =1

63ee appendix B in [1]. Notice &g is o™No-sub-invariant.
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No—1
ﬂ( U a_kA> =1
k=0
and consequently u(A) > N%] This shows that there are a finite number, d, of

components in the ergodic decomposition of 1 with respect to V0, all of which are
supported on sets of the same measure é. Denote these components by 1, ..., ttd,

since Mo A C A we receive:

receiving p = % Zle ;- Proving the claim for all the u;’s concludes the proof.
Let ¢ : Q — Q be the map projecting (w1, ws, ...) onto its E-indices:
wE (wl,wg, ) = (wel,w€2, )

where E = {e1,e2,...} € N. Denoting s = |[{e € E|e < Ny}|, we receive ¢g is a
factor map of dynamical systems:

Vg (Q,%,UNO) — (Q, 4, 0%)
By definition /% = ¢,'/ and by the Abramov-Rokhlin formula:
hy (0| p) =y (0™°) = hapops ()

The ergodic decomposition of ¥ g with respect to o® is é Zle Y pu; hence we can
decompose the respective entropies’:

d d
1 1
hﬂ (UN[)"Q{E) = E Z [hui (UNO) - hwEui (US)] = E th (UNO‘ME)
i=1 i=1

Showing there exists some 1 < ig < d for which:
h”io (O'NO|JZ{E) > hu (O'N0|,,Q7E)

The measure p;, is o™¥o-ergodic with N%)hmo (JN°|.QfE) > « and thus projects as
required.

Notice that since u is o-invariant and ergodic, the map o induces a transitive permu-
tation I, : {1,...,d} — {1,...,d} for which o : (Q, &,0™0, 1;) = (0, &, 0™, pr_5))
is a factor map of m.p.s. Since entropy only decreases by factorization we receive
by, (o™0) > Py, o) (cNo) and transitivity assures that for all 1 <i,j < d:

B () = by, (™)

Let j # ip, there exists some k; with p; = 0% u;,. The Np-periodicity of E yields
the following identity:
0° ok, = ' opp ool
where 9y, is the projection onto the £ — k; = {e — k; | e € E'} indices and
l=|le € E|e—kj <0]|. Therefore:
hy, (0™ p—r,) = Ty, (0™°) = hys sy (0°) =
= h#io (UNO) - h(olowanN"*k'j)Mj (Us> = (*)
where we used the fact that YE_k; M5 = 0°YE_k, ;. Notice that due to the oNo.

invariance of y;,, p;, = oNo~Fi

(*) = h#io (UNO) N hal(wElMo) (08)

; hence:

"Theorem 5.27 in [13]
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Relying again on the decreasing property of entropy under factorization we receive:
hal(ll’Eltio) (%) < hwE”'io (@)
and consequently:

iy (0™ Fpt,) 2 By, (o))

2‘,27 -transversality for the family Fr_j; thus conclud-

ing the proof. O

Notice that I is an interval of

3.I1. Results for General Measures. In section 5 we will establish the following
results regarding transversality:

e [1, oq] is an interval of 6-transversality for the family F, with a; = 0.668475.
e [1 ] is an interval of é-transversality for the family Fpien|izo(mods)}-
with as = 0.713549.

Remark. Note that the value of § > 0 did not play a role in the proof of theorems
3.2 and 3.3 allowing us to disregard it.

Proposition 3.4. Let p be o-ergodic, 1y is absolutely continuous for L-a.e.
Ae [27h() o]

Proof. Apply theorem 3.3 for E = (). The proof in this case is identical to the one
given by Peres and Solomyak in [8]. O

Proposition 3.5. Let i be o-ergodic, iy is absolutely continuous for L-a.e.
A€ [2_%h, ag] where h = hy, (0’3|=£Z7{Z-€N‘i50(m0d3)}>.

Proof. Apply theorem 3.3 for E = {i € N|i = 0(mod3)}. O

Proposition 3.6. Let pu be o-ergodic with h = h, (c), px is absolutely continuous
for L-a.e. Xin [27 (), af ] and [270=5555) 0|, for all such N rendering

these intervals non-empty.

Proof. Denote EYY = {i € N|i # 0 (modN)} and EY = {i € N|i # N,2N (mod3N)}.
The fact that:

Fpy ={6 (") |¢ € F}
Fpy = {0 (2") |¢ € Frien |izo(moas)} }

1 1
means [%, af } is an interval of d-transversality for Fpy and {%, ay } is an interval

of o-transversality for Fpy. Using the Abramov-Rokhlin formula we can give crude
lower bounds, depending only on h, for the corresponding conditional entropies:

hy, (UNWE{V) > hy (6N) = (N=1)=N-h—(N—1)

hy, (a3N|ﬂE§) >3N - h— (3N —2)

Using theorem 3.3 implies the claim. (]
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Below is a graph depicting the areas of almost-sure absolute continuity assured for

each value of h,, (0):
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Corollary 3.7. Given p o-ergodic with h, (o) > 0.986916 the measure uy is abso-
1
lutely continuous for L-a.e. \ € [Q_hﬂ("),af”} where:

1 —logay
M = <N >1— =+ —
max{?)_ eN|h > N-I- Nl}

Proof. The Intervals [27", a1 ] and [2_(}“%),0{2} intersect when h > —log oy + 3,
this is maintained since —log a; + % <0.915 < h.

The intervals {27("7%),042} and {27(’17%),041%} intersect when h > —logas + %,
this is also maintained since — log as + % < 0.9869156 < h.

The interval [2_(’1_%),(11%] is non-empty whenever h > 1 — % + %.

—_ J — 1
The intervals {2_(}’_%?),041N1] and {2_(’“%),04{@ intersect whenever h >

1— & 4 =losa  Assuming 3 < N < M assures™:

1 —log oy
h>1——+ —"—
- N + N -1
and consequently:
1 —logay 1 —logo
h>1——+—2t>s1-—4_—°71
- N + N -1 N + N
rendering the intersecting intervals non-empty. a

Example. Given a o-ergodic measure p with entropy A, (o) > 0.99, its projection
ux will be absolutely continuous for L-a.e. A € (2*h“("), 0.98998).

Assuming lower bounds on the elements of the sequence h,, <UN\%E1N) can yield

stronger claims:

8Notice that for N = 2 this amount to h > 1 which is impossible.
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Proposition 3.8. Given p o-ergodic with h, (o) > 0.986916 and:

hy (O‘N|427E{v) > — log

N
N -1
for all N > 3, the measure )y is absolutely continuous for L-a.e. \ € (2_’”‘/*(‘7)7 1).

Proof. The proof is the same as in 3.7 with condition A, (UN\,Q%E{v) > —% log cvy

—~=1h <0N71|v‘27 N—l) ~= —Lth, (V| +
assuring the intervals |2 " £ ,ai t| and |2 Y Gl E{V),a{\’

are non-trivial and intersect for all N > 3. O

3.III. Markov Measures. Denote by pu, p the Markov measure with marginal

P = (pij), je{+1) and initial probability vector p = ( pp1 ) We know:

hyp.r (0) = — Zpi sz‘j log pij
i 0,5

N
Denote by ¢y : ({il}N,aN) - (({il}N_l) ,a) the factor map projecting
{£1}" onto the BN = {i € N|i # 0 (modN)} vector coordinates:
31 IN+1
PN ((io,i1,...,iN_l,iN,...,Z.,QN_l,...)) = R )
IN-1 loN—1

The projected measure ¥y uP is itself a Markov measure with initial probability
vector ¢ = (pi,Piyis - 'piN—ﬂN—l)ge{il}N*l and marginal matrix:

pP= ([ Z pileij1‘| *Pjiga 'ijsz1>
k=l i je{x1}pN 1

We will Calculate the entropy of the factor, hy ., » (0):

- Z PiiPivis * " Pin_2in_1 Z [Zpilepkj1‘| *Pjrja
k

{1}V -1 je{£1}pN -1

©PiN—2jN-1 log ( [ZpiN—lkpkj1] “Pjige 'ij—2jN—1> =
k

== pin. D <2pm1kpkj1> log (Zpilepm)
3 k

IN—1 J1
N—-2
- § : E :pjk E :pjkjk+1 10gpjkjk+l =
k=1 Jjk Jk+1

= hup1p2 (0) +(N-2)- h/up,P (o)
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Using the Abramov-Rokhlin formula we receive:
By (UNWE{V) = hgnr (0N) = hygp, » (0) =
= 2 hup,P (O’) - hﬂp)pz (o’)

Notice the value is independent of N.
In addition:

By (USWE;) =3 hyr (0) = h e (0)
Using this we can state the following claim:
Proposition 3.9. Given a o-ergodic Markov measure pP* with:
3 hypr (0) = h pes (0) 2 —3logay &~ 1.7431634
2 hypr (0) = hpp2 (0) 2 —2log ap &~ 0.9738312

its projection uA’P is absolutely continuous for L-a.e. X € (27’%??("), 1).

1 o3
Proof. Denote C' = h,».» <0N|£/E{v). The Intervals [2_'7'("),041] and {2 Sh“p( Q{E%)p@]
intersect when h» (03\%]3%) > —3log ;.
. 7%}1“1)(03‘%E1) _1co 17
The intervals |2 2/ a9 | and [2 2 ,0412} intersect when C' > —2log as.

1
The interval [2_%0, alN} is non-empty whenever C' > —log a;.

1

1
For all N > 3, the intervals [21\’01,04?1} and [2_%7a1N] intersect whenever

C > —3log . Since —2logap > —3 log oy all these conditions are satisfied. [

Denote by p? the Markov measure changing signs with probability 1 — p and
leaving signs unchanged with probability p, i.e. the Markov measure with marginal

( p 1-p > .

L=p p

Corollary 3.10. The projection 1% is absolutely continuous for L-a.e. X € (2’H(p’1’p), 1),
given any p € [0.432455,0.567545]

Proof. In this case:

C = hyw (oN\ﬁfE{v) :2H(p,1—p)—H(p2+(1—p)2,2p(1—p))

hyr (03|»@7E;) =3-H(p,1-p)—H (p3 +3p(1-p)*,(1-p)°+301 —p)pQ)
Calculation shows:

By (JSWE%) > —3log oy <= p € [0.329101, 0.670899)]

C > —2log ay <= p € [0.432455, 0.567545]

Hence the conditions of proposition 3.9 hold for all p € [0.432455,0.567545], as
stated. (]
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Another simple family of Markov Measures are the biased Bernoulli measures.
The result received here is strictly weaker than the one by Peres and Solomyak in

[8]-

Corollary 3.11. For the biased Bernoulli convolution v? with p € [0.405058,0.594942],
the projection 13 is absolutely continuous for L-a.e. X € (2*H(p’1*p), 1).

Proof. Denote h = hy» (0) = H (p,1 — p) and notice that h (og\ngé) = 2h and

for all N, h,, (0" |a/g~ ) = h. The assumption assures h > 0.973832, implying the
i Bl

conditions of proposition 3.9 are satisfied. (]

4. EXCEPTIONAL SET 1Is Gy

Lemma 4.1. Let i be a non-atomic o-invariant measure on 2, if uy has an atom
then X is a root of a polynomial with coefficients in {£1,0}.

Proof. Denote:
Ay ={w,7) |m (W) =m (1)} S x Q

Assuming p» has an atom assures p x g1 (A)) > 0. The measure p X p is o X o-

invariant and hence for p x p-a.e. (w,7) € A} there exists a sequence nj — oo for
which Vk (o x 0)"* (x) € A}. This means that:

T (W) — m (1) = m (6™ w) — 7\ (6™ 1) =0

Denoting a; = § (w; — 1) we receive:

=0

——
(e’ nE—1 e’} nEg—1
OZEZWM::E:WM+AW<§:aM“M>::§:mM
=0

=0 l=ny =0

This being true for all ny — oo leaves two options: either ) is a root of a polynomial
with coefficients in {£1,0} or VI € N a; = 0.
The latter cannot hold for p x p-a.e. (w,7) € A} since that would mean:

A} € A={(ww) |we}

wXp

whereas p x  (A) = 0 by Fubini and the non-atomicity of p. O
Denote Af4q,0y = {# € R|z is a root of a polynomial with coefficients in {41, 0}}.
The rest of the proof goes along the lines of proposition 8.1 in [6]:

Proposition 4.2. Given an interval (a,b) the function A — uy (a,b) is continuous
on (3:1) \Agz1,0)-
Proof. For a < b:

pix (a,b) = /X{nlm(n)e(%b)}du

Given a sequence A, — A where A € (%,1) \A{11,0}, we need to show py, (a,b) —
ey (a,b) and in order to do so we will use the dominated convergence theorem. All
we need to show is that the functions:

fn = X{n|ma, me@b)y 1 8= R
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converge pointwise p-a.e. to:

=Xt m mean)

Fix an w € © and denote the function ¢,, (A\) = 7 (w). This Function is continuous
and thus if ¢, (A) € (a,b) then there exists an N for which Vn > N ¢, (A,) € (a,b)
meaning f, (w) =1 for all n > N and evidently f, (w) — f (w).

The same argument holds when ¢, (A\) € int (R\ (a,b)). The case where ¢, (A) =
7 (w) € 9(a,b) = {a,b} can be avoided since p ({w]|p, () € {a,b}}) = 0 as a
consequence of lemma 4.1 and the assumption A ¢ Agyq 0y. (Il

Corollary 4.3. S/ = {)\ € (%, 1) ‘m\ 18 singular} is a G set.

Proof. Denote X = (4,1) \Ags1,03. If we show S| N X is G5 with respect to the
induced metric on X we will conclude S is Gs, since if:

SInX =(U;nX)

where U; are open in R, then:

- (ne)n( L (Ge)ven)

a€Art1,03\SL

as required (recall Agi; ¢y is countable).
Let G be the collection of all finite unions of open intervals (a,b) C R. By proposi-
tion 4.2, for any G € G the set {\ € X |y (G) > 1} is open in X and thus:

N U {exim@>3

Geg
L(G)<2—™

is a Gs set in X. We will prove:

1

(4.1) sinx= U {A6X|u,\(G)>2}
n L(G)<2—n

Let A € S, there exists a set A C R with uy (4) =1 and £(A) = 0. Due to the
properties of Lebesgue measure, for any n there exists a cover by open intervals
{Ui};en of A with 37, |U;| < 27™. On the other hand, there exists a k for which
S (U) > % giving us the required set G = U U; € G.
Now assume A is an element of the right hand side of (4.1). For every n denote
Gn € G to be a finite union of open intervals with £ (G,) < 27" and p, (G,) > 3.
Let A be the limit superior of the sequence G,:

1=NU e

n k=n
On the one hand, for every n € N A C ;- G, giving:

L(A) <L ( Gn> < iz(cn) = gt
k=n k=n
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and consequently £ (A) = 0. On the other hand, by the reverse Fatou lemma:

I I I 1
px (A) = / limy, oo X, dpex > 1imy, o0 / XGndpx = limy, oopn (Gp) > 3

Using the fact that p is of pure type assures A € S, as required. O

5. ESTABLISHING TRANSVERSALITY

5.1. Simple Proof of Transversality. This proof is identical to the one in [7] with
slight changes of notation and terminology. Recall our definition of -transversality:

Definition 5.1. Given a set of indices £ C N, we say the interval I C [%, 1] is

an interval of §-transversality for the family of functions Fg if for any sub-interval
Ip = [Xo,\1] C T and all ¢ € Fg and r > 0:
L{zely||p (@) <r} <2572y
where A (357 apz®) = infy, (a, # 0) € NU {oo}.
Notice that any ¢ € Fg can be presented as:
6 (x) = +a* - g (2)
where s = A (¢) and g is of the form:

i€(Ec—s—1)
0<i

where a; € {£1,0} and E¢ = N\E. In this case we say that g is of the form (E, s).
When E is Ny-periodic there are a finite number of such (E, s)-forms corresponding
to different s € {e € E°|e < Np}.

Notice that proving that for all s € {e € E¢|e < Ny}, all functions of (E, s)-form
satisfy:
(5.1) L{zell|l|g(x)|<r}<25'r

for some § > 0 and any r > 0, implies §-transversality for the whole family Fgr on

I, since:
L{zel|l¢@)|<r} < L{zel|l|g)|<ir}<

< L{zelllg(z)| <A°r} <267\ °r

for any Iy C I.

Definition 5.2. Let g be a function of (E, s)-form satisfying for all x € I:
g(x)<d = ¢ (v) <=6

Then we say g satisfies the J-transversality condition on 1.

Remark. This is the original J-transversality condition as defined in [7].

Lemma 5.3. Let g be a function of (E,s)-form satisfying the -transversality con-
dition on I, then g satisfies condition 5.1 for all r > 0.
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Proof. When r > ¢ the claim is trivially true since:
LAel]|g(x)| <r}<|I|<2

Given some r < 0, by assumption whenever |g (z)| < r it is monotone decreasing
with slope< —d so the function g intersects [—r, r] at most once and for time< 26~ 1r
as required. 0

Definition 5.4. A power series h (z) is called an (E, s) — (x)-function if for some
k>1and a, € [-1,1]:

h(z)=1- Z 2t | 4+ apa® + Z z’

i€(Ec—s—1) ie(Ec—s—1)
0<i<k—1 k+1<i

Lemma 5.5. Suppose that an (E,s) — (x)-function h satisfies:

h(zo) > 8 and k' (zg) < =4
for some xo € [3,1] and § € (0,1). Then all functions of (E,s)-form satisfy the
S-transversality condition on [%, xo].

Proof. W' (0) < —0, since either A’ (0) = —1 when k& > 1 or:
WO =a <ar+ Y iz'=h(20) <=0

i€(Ec—s—1)
2<i
when k£ = 1. Since lim,_,; #' () = oo, assuming A’ (x) > —¢ for some z € [0, z]
would imply A" has at least two zeros in [0,1) contradicting the fact that A" is a
power series with at most one coefficient sign change. Hence A’ (z) < —d for all
x € [0, z0]. Adding the fact that h (0) = 1 implies h (z) > 6 for all = € [0, z¢].
Let g be a power series of form (F,s) and denote f = g — h. By definition f is

of the form:
fz)= Z cx' — Z ¢z’
1€(Ec—s—1) i€(Ec—s—1)
1<i<i 1+1<i

where | € {k — 1,k} and all ¢; > 0. Hence for all z € [0, zo):
gx)<d = f(r)<0 = f(2)<0 = ¢ (z)<—6

Where the middle implication is a consequence of one coefficient sign change:

flx) < 0= Z ' | < Z cix!

i€(Ec—s—1) i€(Ec—s—1)
1<i<t 1+1<4
= f(z)<0
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So we have reduced the problem of proving J-transversality for the whole family
Fg to a problem of finding a finite number (|{e € E¢|e < Ny}|) of (x)-functions
satisfying the conditions of lemma 5.5.

Proposition 5.6.
(1) [%, 0.639774] is an interval of §-transversality for the family F.

(2) [%,042] is an interval of d-transversality for the family Fiien|i=o(mod3)}
with as = 0.713549.

Proof.

(1) When E = @ we only need to check one form of (,0)-functions. The
(*)-function:

(o)
ho(z) =1—2 — 22 —$3+0.08x4+2xi

i=5

satisfies:

ho (0.639774) > 2-1077
h{ (0.639774) < —0.2 < —2-1077
proving [%, 0.639774] is an interval of 2 - 10~ "-transversality for F.
(2) For E = {i € N|i=0(mod3)} we need to address two forms
(a) (E,1)-form - The (x)-function:

9 10
hl(l'):1—x_x3_x4+0855x6+$7+xl+7x3
— X
satisfies:
hi(ag) >2-107°
B (a2) < —0.3 < —2-107°
(b) (E,2)-form - The (x)-function:
8 9
hg(x):1—952_953_3;5_0.53;64—1:1_4—;

satisfies:
ho (052) > 0.05
hy () < —2 < —0.05
Assuring [%, ag] is an interval of 2 - 10~°-transversality for the family Fp.
O

5.11. Estimation of Double Zeros. In [10] Pablo Shmerkin and Boris Solomyak
extended the interval of transversality for the family F significantly by addressing
the equivalent problem of estimating the minimal double zero attained by a power
series of (0, 0)-form:

(5.2) 14> anz™  aneqaio)
n=1

Denote:
Xy = {2z €(0,1) | 3f of (§,0)-form with f (z) = f' (z) = 0}

The following result was established:
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Theorem 5.7.
a = min X, € (0.6684755,0.6684757)

We will not elaborate on the proof of this theorem but rather prove its relevance
to d-transversality, as done in [11]:

Lemma 5.8. For all € > 0 there exists a 6 > 0 such that any function g of (0,0)-
form satisfies:
Ve e[0,a—¢] |g(@)|<d = |¢ (x)] <6
Proof. Assume in contradiction an existence of a sequence of numbers z; € [0, o — €]
and functions g; of (0,0)-form satisfying g¢; (z;) — 0 and ¢} (z;) — 0. WLOG
11— 00 71— 00
we may assume z; — 2 € [0, —¢] and g; — ¢ coefficient by coefficient. The
1— 00 11— 00

function g is also of (0, 0)-form, but this would mean:

g(z) =limg; (z;) =0

i—0

g9 (z) = lim g; (;) = 0
i—0
where x < « in contradiction to the definition of «. O

In particular, there exists a § for which all g of (@,0)-form receiving values in
(—0,6) somewhere along the interval 3, o], for oy = 0.668475, do so with slope
greater than § (in absolute value). As shown in lemma 5.3, this implies that for
any r < § < 1, each interval in g~ ((—r, 7)) is of length< 26~ !r.

In order to deduce a condition of the sort:

E{“” © Ba] g (@) gr} <5

one only needs to give a bound on the number of intervals in g~ ((—4,)):

Lemma 5.9. There exists a constant C such that for all g of (0,0)-form, U =
g 1 ((—6,6)) is a union of at most C intervals.
Proof. For all z € (0,1):

1 1
3 < 2
(1—x) (1—aq)

o0
g ()| <D ia' =
i=0

Every interval J C U admits g (J) = (-4, ), since g is monotone on J and g (0) =
1> 4. Therefore |J| > 25 (1 — a1)?. The fact that £ (U) < 1 assures the required

constant is C' = Lmj O

Corollary 5.10. [%, al] is an interval of C~16-transversality for the family F.
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6. APPENDIX

6.I. Full Proof of Pure Type Using the Density Function. We denote the
a-dimensional Hausdorff measure on R by H®. We prove the following;:

Proposition 6.1. For any o-ergodic measure p and any A € (0,1), the measure
W @8 of pure type with respect to H®, i.e. either uy < H or ux L H®.

Remark. We interpret py < H® as the property that for any set £ C R:

H* (E) =0=px(E) =0
and py L H® as the existence of a set £/ C R for which py (R\E’) = 0 and
H*(E') =0.

Definition. The upper a-dimensional density of a measure v at x € R? is:

e V(Br(2))
DY (v,z) = hr;l:(l)lp W

where B, (x) is the closed ball of radius r around x.

Denote:

12 = {w e | D i m (@) < o0 =730 (D2) ! (0.)

Lemma 6.2. D} (u,-) is measurable.

(B ()
(2r)"
is finite and lims\, Bs () = B, (z). This allows us to restrict the limit to » \, 0
p(Br(2)

2r)
upper semi-continuous with respect to x and thus measurable. This is seen by

Proof. First we notice that is right-continuous with respect to r, since u

along the rationals. Second, for each r > 0 the function DI, (z) =

noticing that for any s > r and z,, — « we have B,(x,) C B,(z) for large enough
B;

n, which implies D7, (z,) < /l(i(f))
(2r)

respect to s, taking s \, r and a limsup,,_, ., gives:

. But since u (Bs(x)) is right-continuous with

limsup D] (x,) < D! (x)

n— oo

as required. Hence we see that D is a limsup of a sequence of measurable functions
and thus is itself measurable.
|

This show AS is measurable.
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Proposition 6.3. A% is o-invariant in  up to a p-null set.

Proof. We will begin by pointing out a few identities.
Since p = op and p = pj1) + plj—1) We get p = oplp) + opl—q and thus:
(6.1) px = Taph = A0 (1) + Tao |-

We notice that for any measurable set £ C R we have:
(6.2 moply (B) = plpy (07 (73 E)) = plpy (07 (r " E) N [1]) =

= plpy (73 (1 B) N (1)) = plpyy (w3t (91 B)) = mapelpy) (94 B)
where the crucial equality is given by the fact that for all F' C Q:

o 'FNl] = {m = (lwows...) |w = (wows...) € F}

hence 7\ (67 F N [1]) = ¢ (maF). A similar identity holds for [-1]. If we denote
gy = T/ [+1) we receive from 6.1+6.2 the following identity:

(6.3) pa =@ty + = iy

Remark. Notice this identity is not equivalent to self-similarity, i.e.c-invariance does
not imply self-similarity of the projected measure.

This shows that for py-a.e. w € Q and every r > 0 we have:
p(Br (maw)) = o3 1 (Br (maw)) + ¢ iy (B (maw)) =
= 3 (¢4 By (maw)) + iy, (90— Br (maw)) =
= 3 (Bar (ma(1w))) + iy (Bar (ma(=1w)))
Dividing by (2r)" we receive:

p (B (mw)) py (Bar (ma(E1w))) _ /\aﬂf (Bar (ma(£1w)))
(2r)” - (2r)” (2r)*
Taking limsup-s gives:
(6.4) DY (u,maw) > \*- DY (uf,ﬂ)\(:tlw))

Now since p and uf are all finite measures we can use Lebesgue’s decomposi-

tion theorem to decompose py = vigc + V45 with respect to uf. Since u;LV+S

and 5 Lv_, there exist two measurable sets Cy and C_ for which pi (R\Cy) =

Vige (R\C+) = 0 and v4, (Cx) = 0. This gives px|c, = Viqe. We also notice

R = C4 U C_, otherwise there would be a set E C R\ (C UC_) with uy (E) >0
A

such that py|pLuy and py|pLuy in contradiction to the fact that uy = pui + uj .
Hence WLOG we may assume that R = C U C_ (strict equality).

If we were to assume that p) (C—) = 0 we would get ;) (C_) = 0 and consequently
py = 0. But this would mean that p([—1]) = 0 and thus that 4 ([1]) = 1 which
would in turn imply g (o=! [1] N [1]) = p ([11]) = 1 and so forth, meaning y1 = 611....
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In this case D (wxd11...,+) = 0 rendering the proposition trivial. The same happens

when assuming uy (Cy) = 0. Therefore we may assume from now on that both Cy

are of positive measure.

We will notice in addition that [1] C 73 'Cy and [-1] C 7, 'C_, since if pu ([1] \7} ' Cy) >
h p

0 then pp ([1]\7y 'C4) > 0 and by definition 4f (mx ([1]\75'C4)) > 0. But this
would mean that 43 (R\Cy) > 0 in contradiction to the definition of C';. Similarly

for C_.

dv
We denote fi = diiac the Radon derivatives and choose them to take values only

A

in [0, 00).%
By Besicovitch’s density theorem, since py is a probability measure on R and
iy (Cy) > 0 we have:
i 2 (Br (2) N Cx)
2 (B (@)
for px-a.e. x € C. Now since py|c, = Viqc We can use the differentiation theorem
(see 2.14 in [5]) to receive:

=1

pa (Br (x) N Cx)

= fx (2)

for py-a.e. x € Cy.
This gives us for p-a.e. w € Q, ) (£lw) € Cx and:

(B () </~u (B, (mr (21w))) i (Br (m (£10)) N1 Cs) ) _
P30 1E (B, (my (F1w)))  mo0 \aE (Br (m (£10))) 412 (B, (m (£10)))

o P (Br (M (£1w)) N Cy)
P50 uE (B, (mr (£1)))
On the other hand, for ui—a.e. x € R we have x € supp (,uir) and thus:

pr (B (2)) _ iy (Br () + 4y (Br (@) _ py (Br(x) _

3y (B (x)) il (B (x)) = ui (B (z))
where we used the fact that:

= fx (mx (F£1w))

z € supp (uy) = Vr >0 ui (B, (z)) >0
Similarly for p, -a.e. x € R. This amounts to the fact that for p-a.e. w €

lim I3 (Br (7T)\ (ilw)))
r=0 p3 (B, (my (£1w)))

So for p-a.e. w € Q:

= fx (m (£1w)) € [1, 00)

+
e (mx (£1w)) - DF (y, ma (£1w)) = fax (ma (£1w)) 'hgljgp = (2r)

(uf (B (1)1 5 310))
(2r) ,uf (By (mx (£1w)))

= limsup
r—0
px (B (mx (£1w)))

= 1l =DF +1
ernj(l)lp (2T)a a (,LL)\, T ( w))

9These can only receive the value oo at a uf—null set at most (see theorem 2.12 in [5])
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Leaving us with:
1

(6.5) D (155 ma (£1w) = s

DY (pux, mx (£1w))

1
where m > 0.

Taking (6.4) and 6.5 we conclude that for p-a.e. w € Q:

a + = A
Dy (px, mw) > A% - Dy (py, ma(F£1w)) = f1 (my (£1w))

and consequently for p-a.e. w € A%, D} (uy,ma(+lw)) < oo or +lw € AL
amounting to o1 (42)) = A% as required. O
m

D (pa, ma(£1w))

Recall the following result from geometric measure theory (see 6.31 in [4]):

Theorem 6.4. Let v be a finite measure on R? and A C R?. Then:
C

(6.6) Vz e A, DI (v,z) >s = H*(A) < . ‘v (4)
where C' is a constant depending only on d. And:

1
(6.7) Ve € A, DF (v,z) <t = H” (A)ZQT%'V(A)

Proposition 6.5. For any o > 0 either uy < H* or uy LH®.

Proof. The set A2 is measurable admitting o= (A%) = A% while y is o-ergodic
hence p (A%) € {0,1}. We will view the two cases: '

If p(A%) = 0, we know that for all x € my (Q\A%), D} (ur,z) = oo and in
particular D} (u,z) > s for any s > 0. Using (6.6) we deduce that for any s,
He (my (QAL)) < €y (mx (Q\AL)) thus leading to H () (Q\AL)) = 0 while
oy (R\my (N\AL)) = p(AL) = 0 and by definition py LH®.

If on the other hand p (A%) = 1, then we denote for each 1 <n € N:

Ay = {W € Q‘D;’ (a, ma (W) < ”}

Clearly A% = J,—; AY and lim,, oo pt (A%) = p(A%) = 1. Let E C R be a set
with H® (E) = 0. For every ¢ > 0 there exists an n for which p (73 E\A2) < e. We
denote E,, = ENmyA% and recall that for all x € E,,, D} (ux,x) < n. Therefore

by (6.7) we receive:
px (Bp) < s%n-HY(Ep) <sn-HY(E)=0
This in turn implies:

pix (B) = px (B\E,) = p (my ' E\A}) <&
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Since this is true for any € > 0 we conclude that H* (F) =0 = ux (F) =0 or
ta K H as required.
(]

6.II. Proof of Measurability - D, (\,w, 7).
Lemma 6.6. The function D, (\,w, ) : I, x 2 x Q@ — Rt U {0} is measurable.

Proof. We will decompose D,, (A\,w, T) and thus reduce the claim to a much simpler
one. First we notice that for all s >0 and 7, \ys B,, (z) = B, (x) and:
1 A w 1 A w

2 I (Bro (@) = oo (Bs ()

Therefore: 1
.. A w
D, (\w,T) = hgn;glf 2—u>\E (Byg (mAT))
qeQN(0,1)

Taking lim inf preserves measurability hence we can reduce to proving the sequence
of functions:

D (A w,7) = p5 (By (A7) = p® (5" (Bg (ma7)))
for ¢ € QN (0,1) is measurable. By the increasing Martingale theorem, for any
B e o
BNlw
n=oo i ([w]pnm,)
since @y N <, / o/r. Hence we can reduce once more to proving the functions:

Di"(A\w, )= Y Xa(w) p(m5 By (myr)) N 4)

AcedgNa, K (A)
u(A)>0

It would suffice to show that given an A € &/ N 7, with p (A4) > 0 the function:

Dt (A7) = pla (73 (Bg (ma7))) = /Xw;%Bq(w)nmA» (r') du (')

is measurable.

Notice that for all A, 7 the set B, (mx7) Nmy (A4) is a finite union of intervals. Due
to the continuity of 7y, given a converging sequence (A, 7,) — (Ao, 70), the set:
(Jim_ (B, (ma,7) (e, (4))) A (By (72,70) N7, (A)) € 0(By (72,70) N7, (4)

n—oo

is finite.
Using lemma 4.1, whenever Ao ¢ Aqyq,0):

p (3, (9(Bg (mr,m) N7a, (4)))) =0

meaning Xﬂ},,f(Bq(mn )N, (A)) Converges pointwise p-a.e. to Xﬂ,;ol(Bq (72070 )1 (A))

and thus by dominated convergence:

/ X 1By (ma 7) e, (A)) B = / Xon (B (g 7o) g (4)) B

This proves DZ’A is continuous. Having £ (A;11,y) = 0 con-
((3.0)\A(z1,0y) x {1}

cludes the proof. O
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