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Abstract. This paper is concerned with the question of absolute continuity of
distributions µλ of random series

∑
±λn given as a projection of shift-ergodic

probability measures µ on the sequence space {±1}N and the answer's depen-

dence upon λ ∈
(
1
2
, 1
)
. In [8], Y. Peres and B. Solomyak proved that given a

shift-ergodic probability measure µ on {±1}N with Kolmogorov-Sinai entropy
h, its projection µλ is absolutely continuous for Leb-a.e. λ ∈

(
2−h, α

)
, where

α ≈ 0.668475. It is conjectured that this is true for Leb-a.e. λ ∈
(
2−h, 1

)
.

Employing the techniques developed by Solomyak and Peres along with a de-
composition of µ allows signi�cantly extending the area of almost-sure abso-
lute continuity for measures with high entropy. In Particular, the conjecture
is con�rmed for Markov measures satisfying some conditional entropy bounds,

such as the Markov measures given by marginal

(
p 1− p

1− p p

)
for any

p ∈ [0.433, 0567].
In addition, general properties of the projection of ergodic measures are estab-
lished - Law of pure types and the set of λ's corresponding to singular measures
being Gδ .
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1. Background and Historical notes

1.I. Setting and Background. Consider the sequence space Ω = {±1}N equipped
with the shift map σ : (ω1, ω2,...) 7→ (ω2, ω3,...) and the metric d (ω, τ) = 2−|ω∧τ |,
|ω ∧ τ | = mink {ωk 6= τk}. Given a parameter λ ∈ (0, 1) we de�ne the projection
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map πλ : Ω→ R by:

πλ (ω) =

∞∑

n=0

ωnλ
n

This map is clearly continuous and measurable. Given some measure µ on Ω we
denote its projection by µλ = πλµ. We are concerned with the question -
For which µ and λ is µλ absolutely continuous with respect to Lebesgue measure L?

A �rst answer can be given by considering the geometry of suppµλ. By de�nition,
the projected measure is supported on πλ (Ω) which can be viewed as the attractor
of the IFS Φλ =

{
ϕλ−, ϕ

λ
+

}
with ϕλ± (x) = λx± 1, since:

ϕλ± (πλ (ω)) = ±1 +

∞∑

n=0

ωnλ
n+1

and consequently:

ϕλ− (πλ (Ω)) ∪ ϕλ+ (πλ (Ω)) = πλ ([−1]) ∪ πλ ([+1]) = πλ (Ω)

where we use the notation [i], for any i ∈ {±1}k, to represent the corresponding
cylinder set [i] = {ω ∈ Ω |ω1ω2...ωk = i}.
In the case where λ ∈

(
0, 1

2

)
, the IFS Φλ and its attractor satisfy:

ϕλ− (πλ (Ω)) ∩ ϕλ+ (πλ (Ω)) = ∅
a condition called strong separation. This condition implies the Hausdor� dimen-
sion of πλ (Ω) is equal to the similarity dimension of Φλ = −1

log2 λ
< 1 (see theorem

5.16 in [4]), meaning µ is supported on a set of zero Lebesgue measure. Therefore,
all measures on Ω will project onto singular measures by πλ for any λ ∈

(
0, 1

2

)
.

The question remains - what happens when λ ∈
[

1
2 , 1
)
and πλ (Ω) =

[
−1

1−λ ,
1

1−λ

]
?

1.II. Bernoulli Convolutions1. The case where µ is taken to be the Bernoulli

measure ν
1
2 =

(
1
2 ,

1
2

)N
on Ω has been fruitfully studied since the 1930's. In this

case ν
1
2

λ is the in�nite convolution of the measures 1
2 (δ−λn + δλn), hence the name

'In�nite Bernoulli Convolutions'. Denote by S⊥ the set of λ ∈
(

1
2 , 1
)
for which

ν
1
2

λ = πλν
1
2 is singular. The only elements known to be found in S⊥ are reciprocals of

Pisot numbers in (1, 2)2. The proof is due to Erdös (1939) using harmonic analysis.
It is conjectured that these are the only elements of S⊥. The �rst important result
in that direction is also due to Erdös (1940) where he proved that S⊥∩(a, 1) has zero
Lebesgue measure for some a < 1. Kahane later indicated the argument actually
implies that the Hausdor� dimension of S⊥∩(a, 1) tends to 0 as a↗ 1. In [11], Boris
Solomyak showed S⊥ is of zero Lebesgue measure using a certain transversality
property of the family of functions F =

{
f (x) =

∑∞
k=0 akx

k | ak ∈ {±1, 0}
}
and a

sub-family. Solomyak together with Yuval Peres later published a simpler proof [7].
Recently Pablo Shmerkin[9], relying on work by Michael Hochman[3], proved the
set S⊥ is actually of Hausdor� dimension 0, the strongest result yet.
Both the Erdös-Kahane and the Hochman-Shmerkin approaches rely heavily upon

the in�nite convolution structure of ν
1
2

λ , something one cannot assume when dealing

1The historical background goes along the lines of [6] with some recent updates.
2Those algebraic numbers whose Galois conjugates are of modulus< 1
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with the projection of a general ergodic measure. This paper will employ the
techniques developed by Peres and Solomyak.

1.III. General Ergodic Measures. In [8], Peres and Solomyak e�ectively proved
the following theorem (in a much broader context):

Theorem. Given a σ-ergodic probability measure µ on Ω, µλ is:

(1) absolutely continuous for L-a.e. λ ∈
(
2−hµ(σ), 0.668475

)

(2) singular for all λ < 2−hµ(σ)

The value 0.668475 is due to the transversality property. This property will be
discussed in detail in section 5. We will give the proof of claim 2 here and deduce
claim 1 later, as a consequence of theorem 3.2.

Proof. Using the Shannon-McMillan-Breiman theorem we know that for µ-a.e. ω ∈
Ω:

lim
n→∞

−1

n
log (µ ([ω]n)) = hµ (σ)

where [ω]n = [ω1...ωn]. Hence by Billingsley's lemma the Hausdor� dimension of µ
in Ω is equal to hµ (σ).
Notice that the map πλ is (− log λ)−Hölder since:

|πλ (ω)− πλ (τ)| ≤ Cλ−|ω∧τ | ≤ C (d (ω, τ))
− log λ

Using this fact we receive:

dimH µλ ≤
−1

log λ
dimH µ = −hµ (σ)

log λ

When λ < 2−hµ(σ) we have dimH µλ < 1 and consequently µλ is singular. �

It is naturally conjectured that:

Conjecture. Given a σ-ergodic probability measure µ, its projection µλ is abso-

lutely continuous for L-a.e. λ ∈
(
2−hµ(σ), 1

)
.

In [8] the authors tackle this conjecture for the biased Bernoulli convolutions,

where µ is taken to be the Bernoulli measure νp = (p, 1− p)N for some p ∈ (0, 1),
and prove the following theorem:

Theorem. νpλ is absolutely continuous for L-a.e. λ ∈
(
pp (1− p)1−p

, 1
)
, for any

p ∈
[

1
3 ,

2
3

]
, 3

2. Law of Pure Types

In question of absolute continuity, a measure is said to be of pure type if its
Lebesgue decomposition with respect to L is trivial, i.e. it is either absolutely
continuous or singular. Jessen and Wintner (1935) showed that any convergent
in�nite convolution of discrete measures is of pure type. In [6] is given a proof that
any self-similar probability measure on Rd is of pure type. We give two proofs to
the following proposition:

3Note that hνp (σ) = H (p, 1− p) = −p log p− (1− p) log (1− p)
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Proposition 2.1. Given a σ-ergodic probability measure µ on Ω and some λ ∈
(0, 1), the projected measure µλ is of pure type with respect to Lebesgue measure,

i.e. µλ � L or µλ ⊥ L.
The following proofs can be extended to suit a wider variety of IFS symbols

space projections and can also be adapted to proving pure type with respect to any
α-dimensional Hausdor� measure, as been done in 6.I.

Elementary Proof.

Proof. Denote Φλ =
{
ϕλ−, ϕ

λ
+

}
with ϕλ± (x) = λx ± 1. assume there exists a set

A ⊆ R with µλ (A) > 0 and L (A) = 0. For every �nite sequence i ∈ {±1}n the
map ϕλi1 ◦ ...◦ϕλin is a�ne thus giving L

((
ϕλi1 ◦ ... ◦ ϕλin

)
(A)
)

= 0 and consequently:

L


⋃

n

⋃

i∈{−1,1}n

(
ϕλi1 ◦ ... ◦ ϕλin

)
(A)


 = 0

On the other hand:

⋃

n

⋃

i∈{−1,1}n

(
ϕλi1 ◦ ... ◦ ϕλin

)
(A) = πλ

(⋃

n

σ−n
(
π−1
λ A

)
)

= A′

Since π−1
λ A ⊆ Ω is a set of positive µ-measure, by ergodicity:

µ

(⋃

n

σ−n
(
π−1
λ A

)
)

= 1

meaning µλ (A′) = 1 and L (A′) = 0. �

Sketch of Proof Using the Density Function.

This proof is due to Michael Hochman.

De�nition. The upper 1-dimensional density of a measure ν at x ∈ Rd is:

D+
1 (ν, x) = lim sup

r→0

ν (Br(x))

2r

where Br (x) is the closed ball of radius r around x.

Denote:

A1
∞ =

{
ω ∈ Ω

∣∣∣∣D
+
1 (µλ, πλ (ω)) <∞

}
= π−1

λ ◦
(
D+

1

)−1
([0,∞))

Sketch of proof: Using the a�ne nature of ϕλ± and the Lebesgue-Besicovitch density

theorem (see 2.14 in [5]) it can be shown that for µ-a.e. ω ∈ Ω:

D+
1 (µλ, πλω) ≥ C+ (ω) ·D+

1 (µλ, πλ(1ω))

D+
1 (µλ, πλω) ≥ C− (ω) ·D+

1 (µλ, πλ(−1ω))
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where the functions C+, C− are positive µ-a.e., proving σ−1A1
∞ =

µ
A1
∞. The ergod-

icity of µ implies either:

µ
(
A1
∞
)

= 0 =⇒ µλ ⊥ L

or:

µ
(
A1
∞
)

= 1 =⇒ µλ � L
�

A full proof is given in appendix 6.I

3. Entropy and Absolute Continuity

We begin the main proof with some notations: P = {[−1] , [1]} is the generating
partition for (Ω,A , σ) and An =

∨n−1
i=0 σ

−iP. Given a set of indices E ⊆ N we
denote:

AE =
∨

i∈E
σ−iP

the σ-algebra controlling all the E-indices and:

FE =

{
f (x) =

∞∑

k=0

akx
k ∈ F | ∀k ∈ E ak = 0

}

the corresponding sub-family of:

F =

{
f (x) =

∞∑

k=0

akx
k | ak ∈ {±1, 0}

}

with all E-indices set to 0.
E is said to be N0-periodic if ∀i ∈ N i ∈ E ⇐⇒ i + N0 ∈ E. We refer to the
empty set ∅ as 1-periodic, with F∅ = F .
De�nition 3.1. Given a set of indices E ⊆ N, we say the interval I ⊆

[
1
2 , 1
]
is

an interval of δ-transversality for the family of functions FE if for any sub-interval
I0 = [λ0, λ1] ⊆ I and all φ ∈ FE and r > 0:

L{x ∈ I0 | |φ (x)| ≤ r} ≤ 2δ−1λ
−∧(φ)
0 r

where we denote ∧
(∑∞

k=0 akx
k
)

= infk (ak 6= 0) ∈ N ∪ {∞}.
Remark. This de�nition of δ-transversality is di�erent than the one used by Peres
and Solomyak in [7]. This is only in order to postpone some technicalities arising
from �xing the E-indices to section 5 where we show how the original condition of
δ-transversality implies our de�nition.

3.I. Main Theorem.

Theorem 3.2. Let E ⊆ N be an N0-periodic set of indices with I an interval of

δ-transversality for the family FE. Let µ be a probability measure on Ω with:

lim
l→∞

−1

l ·N0
log
(
µAE
ω

(
[ω]l·N0

))
≥ α

for µ-a.e. ω ∈ Ω where µ =
´
µAE
ω dµ (ω) is the decomposition of µ with respect to

the σ-algebra AE. Then µλ is absolutely continuous for L-a.e. λ ∈ (2−α, 1) ∩ I.
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Proof. We will use a decomposition of µλ induced by the decomposition of µ:

µλ =

ˆ
Ω

µAE ,ω
λ dµ (ω)

where µAE ,ω
λ = πλµ

AE
ω . If we show that for L-a.e. λ ∈ Ih =

(
2−h, 1

)
∩I the measure

µAE ,ω
λ is absolutely continuous for µ-a.e. ω ∈ Ω then for all such λ the measure µλ

is also absolutely continuous. Consider the function:

Dµ (λ, ω, τ) = lim inf
r↘0

µAE ,ω
λ (Br (πλ (τ)))

2r

For any �xed λ and ω, Dµ (λ, ω, ·) is the lower density function of µAE ,ω
λ . The

measure µAE ,ω
λ is absolutely continuous if and only if Dµ (λ, ω, ·) < ∞ µAE ,ω

λ -
a.e. (see theorem 2.12 in [5]). Therefore it would su�ce to show that for L-a.e.
λ ∈ Ih the function Dµ (λ, ω, τ) receives �nite value for µ-a.e. ω and µAE ,ω

λ -a.e.
τ ∈ Ω. Using Fubini's theorem and the measurability of Dµ (λ, ω, τ) : Ih×Ω×Ω→
R+ ∪ {∞} (established in lemma 6.6) we can reduce to proving that for µ-a.e. ω:

Dµ (λ, ω, τ) <∞

for µAE ,ω
λ -a.e. τ and L-a.e. λ ∈ Ih. As assumed:

(3.1) lim
l→∞

−1

l ·N0
log
(
µAE
ω

(
[ω]l·N0

))
≥ α

for all ω in a set Ω′ of full µ-measure. For µ-a.e. ω, µAE
ω (Ω′) = 1 meaning there

exists a set Ω′′ of full µ-measure for which all ω in Ω′′ , satisfy property 3.1 for
µAE
ω -a.e. τ . Fix such an ω ∈ Ω′′.

Using Egoro�'s theorem there exists a sequence of sets An ⊆ Ω with:

µAE
ω

( ∞⋃

n=1

An

)
= 1

for which the convergence in (3.1) is uniform4. Assuming Ih 6= ∅ we denote λ0 =
inf Ih and for all 0 < ε < |Ih|, λ0,ε = λ0 + ε and Iεh = Ih ∩ [λ0,ε, 1]. Using Fatou's
lemma and Fubini's theorem we calculate:ˆ
Iεh

ˆ
An

Dµ (λ, ω, τ) dµAE
ω (τ) dλ ≤ lim inf

r↘0

1

2r

ˆ
Iεh

ˆ
An

µAE ,ω
λ (Br (πλ (τ))) dµAE

ω (τ) dλ =

= lim inf
r↘0

1

2r

ˆ
Iεh

ˆ
An

ˆ
Ω

χ(τ,τ ′)

∣∣∣∣ |πλ(τ)−πλ(τ ′)|≤r


dµAE

ω (τ ′) dµAE
ω (τ) dλ =

= lim inf
r↘0

1

2r

ˆ
An

ˆ
Ω

L
{
λ ∈ Iεh

∣∣∣∣ |πλ (τ)− πλ (τ ′)| ≤ r
}
dµAE

ω (τ ′) dµAE
ω (τ) = (?)

Recall at this point that the measure µAE
ω is supported on [ω]AE

, the ω-atom with

respect to AE
5, meaning that for µAE

ω -a.e. τ ∀k ∈ E τk = ωk which consequently

4meaning that ∀β < α ∃k ∀l > k −1
l·N0

log
(
µ

AE
ω

(
[ω]l·N0

))
> β

5AE is clearly a countably generated σ-algebra
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assures 1
2 (πλ (τ)− πλ (τ ′)) ∈ FE . Due to the δ-transversality on I we insert:

L
{
λ ∈ Iεh

∣∣∣∣ |πλ (τ)− πλ (τ ′)| ≤ r
}

=

= L
{
λ ∈ Iεh

∣∣∣∣
∣∣∣∣
1

2
(πλ (τ)− πλ (τ ′))

∣∣∣∣ ≤
r

2

}
≤ δ−1λ

−∧(φ)
0,ε r

to conclude:

(?) ≤ (2δ)
−1
ˆ
An

ˆ
Ω

λ
−∧(πλ(τ)−πλ(τ ′))
0,ε dµAE

ω (τ ′) dµAE
ω (τ) =

= (2δ)
−1
ˆ
An

ˆ
Ω

λ
−|τ∧τ ′|
0,ε dµAE

ω (τ ′) dµAE
ω (τ) =

= (2δ)
−1
ˆ
An

∞∑

l=0

λ−l0,εµ
AE
ω ([τ ]l) dµ

AE
ω (τ) ≤

≤ (2δ)
−1



∑

s∈Ec
s<N0

λ−s0,ε



ˆ
An

∞∑

l=0

λ−l·N0
0,ε µAE

ω

(
[τ ]l·N0

)
dµAE

ω (τ)

By the de�nition of An there exists a k for which all l > k admit:

−1

l ·N0
log
(
µAE
ω

(
[τ ]l·N0

))
> β > − log λ0,ε

assuring:
∞∑

l=0

λ−l·N0
0,ε µAE

ω

(
[τ ]l·N0

)
< C +

∞∑

l=k+1

λ−l·N0
0,ε 2−β·l·N0

= C +

∞∑

l=k+1

2−l·N0(β+log λ0,ε) < C ′ <∞

and consequently: ˆ
Iεh

ˆ
An

Dµ (λ, ω, τ) dµAE
ω (τ) dλ <∞

Taking ε ↘ 0 will give Dµ (λ, ω, τ) < ∞ for L-a.e. λ ∈ Ih and µAE
ω -a.e. τ ∈ An.

This being true for all n concludes the proof. �

Corollary 3.3. Let E ⊆ N be an N0-periodic set of indices with I an interval of

δ-transversality for the family FE. Let µ be σ-ergodic with 1
N0
hµ
(
σN0 |AE

)
≥ α,

then the projection µλ is absolutely continuous for L-a.e. λ ∈ (2−α, 1) ∩ I.
Proof. In the case where µ is also σN0-ergodic, the conditional Shannon-McMillan-
Breiman theorem for the m.p.s.

(
Ω, µ, σN0

)
6 assures the conditions of theorem 3.2

are ful�lled, thus proving the claim.
When µ is not σN0-ergodic, we can decompose µ to its ergodic components. Let
A ⊆ Ω be some non-trivial σN0 -invariant set. µ is σ-ergodic meaning:

µ

( ∞⋃

k=0

σ−kA

)
= 1

6See appendix B in [1]. Notice AE is σN0 -sub-invariant.
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since σ−N0A ⊆ A we receive:

µ

(
N0−1⋃

k=0

σ−kA

)
= 1

and consequently µ (A) ≥ 1
N0

. This shows that there are a �nite number, d, of

components in the ergodic decomposition of µ with respect to σN0 , all of which are
supported on sets of the same measure 1

d . Denote these components by µ1, ..., µd,

receiving µ = 1
d

∑d
i=1 µi. Proving the claim for all the µi's concludes the proof.

Let ψE : Ω→ Ω be the map projecting (ω1, ω2, ...) onto its E-indices:

ψE (ω1, ω2, ...) = (ωe1 , ωe2 , ...)

where E = {e1, e2, ...} ⊆ N. Denoting s = |{e ∈ E | e < N0}|, we receive ψE is a
factor map of dynamical systems:

ψE :
(
Ω,A , σN0

)
→ (Ω,A , σs)

By de�nition AE = ψ−1
E A and by the Abramov-Rokhlin formula:

hµ
(
σN0 |AE

)
= hµ

(
σN0

)
− hψEµ (σs)

The ergodic decomposition of ψEµ with respect to σs is 1
d

∑d
i=1 ψEµi hence we can

decompose the respective entropies7:

hµ
(
σN0 |AE

)
=

1

d

d∑

i=1

[
hµi

(
σN0

)
− hψEµi (σs)

]
=

1

d

d∑

i=1

hµi
(
σN0 |AE

)

Showing there exists some 1 ≤ i0 ≤ d for which:

hµi0
(
σN0 |AE

)
≥ hµ

(
σN0 |AE

)

The measure µi0 is σN0-ergodic with 1
N0
hµi0

(
σN0 |AE

)
≥ α and thus projects as

required.
Notice that since µ is σ-invariant and ergodic, the map σ induces a transitive permu-
tation Πσ : {1, ..., d} → {1, ..., d} for which σ :

(
Ω,A , σN0 , µi

)
→
(
Ω,A , σN0 , µΠσ(i)

)

is a factor map of m.p.s. Since entropy only decreases by factorization we receive
hµi

(
σN0

)
≥ hµΠσ(i)

(
σN0

)
and transitivity assures that for all 1 ≤ i, j ≤ d:

hµi
(
σN0

)
= hµj

(
σN0

)

Let j 6= i0, there exists some kj with µj = σkjµi0 . The N0-periodicity of E yields
the following identity:

σs ◦ ψE−kj = σl ◦ ψE ◦ σN0−kj

where ψE−kj is the projection onto the E − kj = {e− kj | e ∈ E} indices and
l = |[e ∈ E | e− kj < 0]|. Therefore:

hµj
(
σN0 |AE−kj

)
= hµj

(
σN0

)
− hψE−kjµj (σs) =

= hµi0
(
σN0

)
− h(σl◦ψE◦σN0−kj )µj (σs) = (?)

where we used the fact that ψE−kjµj = σsψE−kjµj . Notice that due to the σN0 -

invariance of µi0 , µi0 = σN0−kjµj hence:

(?) = hµi0
(
σN0

)
− hσl(ψEµi0) (σs)

7Theorem 5.27 in [13]
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Relying again on the decreasing property of entropy under factorization we receive:

hσl(ψEµi0) (σs) ≤ hψEµi0 (σs)

and consequently:

hµj
(
σN0 |AE−kj

)
≥ hµi0

(
σN0 |AE

)

Notice that I is an interval of δ

2kj
-transversality for the family FE−kj thus conclud-

ing the proof. �

3.II. Results for General Measures. In section 5 we will establish the following
results regarding transversality:

•
[

1
2 , α1

]
is an interval of δ-transversality for the family F , with α1 = 0.668475.

•
[

1
2 , α2

]
is an interval of δ-transversality for the family F{i∈N | i≡0(mod3)},

with α2 = 0.713549.

Remark. Note that the value of δ > 0 did not play a role in the proof of theorems
3.2 and 3.3 allowing us to disregard it.

Proposition 3.4. Let µ be σ-ergodic, µλ is absolutely continuous for L-a.e.
λ ∈

[
2−hµ(σ), α1

]
.

Proof. Apply theorem 3.3 for E = ∅. The proof in this case is identical to the one
given by Peres and Solomyak in [8]. �

Proposition 3.5. Let µ be σ-ergodic, µλ is absolutely continuous for L-a.e.
λ ∈

[
2−

1
3 h̃, α2

]
where h̃ = hµ

(
σ3|A{i∈N | i≡0(mod3)}

)
.

Proof. Apply theorem 3.3 for E = {i ∈ N | i ≡ 0 (mod3)}. �

Proposition 3.6. Let µ be σ-ergodic with h = hµ (σ), µλ is absolutely continuous

for L-a.e. λ in
[
2−(h−N−1

N ), α
1
N
1

]
and

[
2−(h− 3N−2

3N ), α
1
N
2

]
, for all such N rendering

these intervals non-empty.

Proof. Denote EN1 = {i ∈ N | i 6= 0 (modN)} and EN2 = {i ∈ N | i 6= N, 2N (mod3N)}.
The fact that:

FEN1 =
{
φ
(
xN
)
|φ ∈ F

}

FEN2 =
{
φ
(
xN
)
|φ ∈ F{i∈N | i≡0(mod3)}

}

means
[

1
2 , α

1
N
1

]
is an interval of δ-transversality for FEN1 and

[
1
2 , α

1
N
2

]
is an interval

of δ-transversality for FEN2 . Using the Abramov-Rokhlin formula we can give crude

lower bounds, depending only on h, for the corresponding conditional entropies:

hµ

(
σN |AEN1

)
≥ hµ

(
σN
)
− (N − 1) = N · h− (N − 1)

hµ

(
σ3N |AEN2

)
≥ 3N · h− (3N − 2)

Using theorem 3.3 implies the claim. �
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Below is a graph depicting the areas of almost-sure absolute continuity assured for
each value of hµ (σ):

Corollary 3.7. Given µ σ-ergodic with hµ (σ) ≥ 0.986916 the measure µλ is abso-

lutely continuous for L-a.e. λ ∈
[
2−hµ(σ), α

1
M
1

]
where:

M = max

{
3 ≤ N ∈ N |h ≥ 1− 1

N
+
− logα1

N − 1

}

.

Proof. The Intervals
[
2−h, α1

]
and

[
2−(h− 1

3 ), α2

]
intersect when h ≥ − logα1 + 1

3 ,

this is maintained since − logα1 + 1
3 ≤ 0.915 ≤ h.

The intervals
[
2−(h− 1

3 ), α2

]
and

[
2−(h− 1

2 ), α
1
2
1

]
intersect when h ≥ − logα2 + 1

2 ,

this is also maintained since − logα2 + 1
2 ≤ 0.9869156 ≤ h.

The interval
[
2−(h−N−1

N ), α
1
N
1

]
is non-empty whenever h ≥ 1− 1

N + − logα1

N .

The intervals

[
2−(h−N−2

N−1 ), α
1

N−1

1

]
and

[
2−(h−N−1

N ), α
1
N
1

]
intersect whenever h ≥

1− 1
N + − logα1

N−1 . Assuming 3 ≤ N ≤M assures8:

h ≥ 1− 1

N
+
− logα1

N − 1

and consequently:

h ≥ 1− 1

N
+
− logα1

N − 1
> 1− 1

N
+
− logα1

N

rendering the intersecting intervals non-empty. �

Example. Given a σ-ergodic measure µ with entropy hµ (σ) > 0.99, its projection

µλ will be absolutely continuous for L-a.e. λ ∈
(
2−hµ(σ), 0.98998

)
.

Assuming lower bounds on the elements of the sequence hµ

(
σN |AEN1

)
can yield

stronger claims:

8Notice that for N = 2 this amount to h > 1 which is impossible.
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Proposition 3.8. Given µ σ-ergodic with hµ (σ) > 0.986916 and:

hµ

(
σN |AEN1

)
≥ − N

N − 1
logα1

for all N ≥ 3, the measure µλ is absolutely continuous for L-a.e. λ ∈
(
2−hµ(σ), 1

)
.

Proof. The proof is the same as in 3.7 with condition hµ

(
σN |AEN1

)
≥ − N

N−1 logα1

assuring the intervals

[
2
− 1
N−1hµ

(
σN−1|A

E
N−1
1

)
, α

1
N−1

1

]
and

[
2
− 1
N hµ

(
σN |A

EN1

)
, α

1
N
1

]

are non-trivial and intersect for all N ≥ 3. �

3.III. Markov Measures. Denote by µp,P the Markov measure with marginal

P = (pij)i,j∈{±1} and initial probability vector p =

(
p1

p−1

)
. We know:

hµp,P (σ) = −
∑

i

pi
∑

i,j

pij log pij

Denote by ψN :
(
{±1}N , σN

)
→
((
{±1}N−1

)N
, σ

)
the factor map projecting

{±1}N onto the EN1 = {i ∈ N | i 6= 0 (modN)} vector coordinates:

ψN ((i0, i1, ..., iN−1, iN , ..., i,2N−1, ...)) =







i1
...

iN−1


 ,




iN+1

...
i2N−1


 , ...




The projected measure ψNµ
p is itself a Markov measure with initial probability

vector q =
(
pi1pi1i2 · · · piN−2iN−1

)
i∈{±1}N−1 and marginal matrix:

P =

([∑

k=±1

piN−1kpkj1

]
· pj1j2 · · · pjN−2jN−1

)

i,j∈{±1}N−1

We will Calculate the entropy of the factor, hψNµp,P (σ):

−
∑

i∈{±1}N−1

pi1pi1i2 · · · piN−2iN−1

∑

j∈{±1}N−1

[∑

k

piN−1kpkj1

]
· pj1j2 · · ·

· · · pjN−2jN−1
log

([∑

k

piN−1kpkj1

]
· pj1j2 · · · pjN−2jN−1

)
=

= −
∑

iN−1

piN−1

∑

j1

(∑

k

piN−1kpkj1

)
log

(∑

k

piN−1kpkj1

)

−
N−2∑

k=1

∑

jk

pjk
∑

jk+1

pjkjk+1
log pjkjk+1

=

= hµp,P2 (σ) + (N − 2) · hµp,P (σ)
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Using the Abramov-Rokhlin formula we receive:

hµp,P
(
σN |AEN1

)
= hµp,P

(
σN
)
− hψNµp,P (σ) =

= 2 · hµp,P (σ)− hµp,P2 (σ)

Notice the value is independent of N .
In addition:

hµp,P
(
σ3|AE1

2

)
= 3 · hµp,P (σ)− hµp,P3 (σ)

Using this we can state the following claim:

Proposition 3.9. Given a σ-ergodic Markov measure µp,P with:

3 · hµp,P (σ)− hµp,P3 (σ) ≥ −3 logα1 ≈ 1.7431634

2 · hµp,P (σ)− hµp,P2 (σ) ≥ −2 logα2 ≈ 0.9738312

its projection µp,Pλ is absolutely continuous for L-a.e. λ ∈
(

2−hµp,P (σ), 1
)
.

Proof. Denote C = hµp,P
(
σN |AEN1

)
. The Intervals

[
2−h(σ), α1

]
and

[
2
− 1

3hµp
(
σ3|A

E1
2

)
, α2

]

intersect when hµp
(
σ3|AE1

2

)
≥ −3 logα1.

The intervals

[
2
− 1

3hµp
(
σ3|A

E1
2

)
, α2

]
and

[
2−

1
2C , α

1
2
1

]
intersect when C ≥ −2 logα2.

The interval
[
2−

1
N C , α

1
N
1

]
is non-empty whenever C ≥ − logα1.

For all N ≥ 3, the intervals

[
2−

C
N−1 , α

1
N−1

1

]
and

[
2−

C
N , α

1
N
1

]
intersect whenever

C ≥ − 3
2 logα1. Since −2 logα2 ≥ − 3

2 logα1 all these conditions are satis�ed. �

Denote by µp the Markov measure changing signs with probability 1 − p and
leaving signs unchanged with probability p, i.e. the Markov measure with marginal(

p 1− p
1− p p

)
.

Corollary 3.10. The projection µpλ is absolutely continuous for L-a.e. λ ∈
(
2−H(p,1−p), 1

)
,

given any p ∈ [0.432455, 0.567545]

Proof. In this case:

C = hµp
(
σN |AEN1

)
= 2H (p, 1− p)−H

(
p2 + (1− p)2

, 2p (1− p)
)

hµp
(
σ3|AE1

2

)
= 3 ·H (p, 1− p)−H

(
p3 + 3p (1− p)2

, (1− p)3
+ 3 (1− p) p2

)

Calculation shows:

hµp
(
σ3|AE1

2

)
≥ −3 logα1 ⇐= p ∈ [0.329101, 0.670899]

C ≥ −2 logα2 ⇐= p ∈ [0.432455, 0.567545]

Hence the conditions of proposition 3.9 hold for all p ∈ [0.432455, 0.567545], as
stated. �



ON BERNOULLI CONVOLUTIONS AND THE PROJECTION OF ERGODIC MEASURES 15

Another simple family of Markov Measures are the biased Bernoulli measures.
The result received here is strictly weaker than the one by Peres and Solomyak in
[8].

Corollary 3.11. For the biased Bernoulli convolution νp with p ∈ [0.405058, 0.594942],
the projection νpλ is absolutely continuous for L-a.e. λ ∈

(
2−H(p,1−p), 1

)
.

Proof. Denote h = hνp (σ) = H (p, 1− p) and notice that h
(
σ3|AE1

2

)
= 2h and

for all N , hµ

(
σN |AEN1

)
= h. The assumption assures h > 0.973832, implying the

conditions of proposition 3.9 are satis�ed. �

4. Exceptional Set is Gδ

Lemma 4.1. Let µ be a non-atomic σ-invariant measure on Ω, if µλ has an atom

then λ is a root of a polynomial with coe�cients in {±1, 0}.
Proof. Denote:

Aλ0 = {(ω, τ) |πλ (ω) = πλ (τ)} ⊆ Ω× Ω

Assuming µλ has an atom assures µ × µ
(
Aλ0
)
> 0. The measure µ × µ is σ × σ-

invariant and hence for µ× µ-a.e. (ω, τ) ∈ Aλ0 there exists a sequence nk →∞ for
which ∀k (σ × σ)

nk (x) ∈ Aλ0 . This means that:

πλ (ω)− πλ (τ) = πλ (σnkω)− πλ (σnkτ) = 0

Denoting al = 1
2 (ωl − τl) we receive:

0 =

∞∑

l=0

alλ
l =

nk−1∑

l=0

alλ
l + λnk

=0︷ ︸︸ ︷( ∞∑

l=nk

alλ
l−nk

)
=

nk−1∑

l=0

alλ
l

This being true for all nk →∞ leaves two options: either λ is a root of a polynomial
with coe�cients in {±1, 0} or ∀l ∈ N al = 0.
The latter cannot hold for µ× µ-a.e. (ω, τ) ∈ Aλ0 since that would mean:

Aλ0 ⊆
µ×µ

∆ = {(ω, ω) |ω ∈ Ω}

whereas µ× µ (∆) = 0 by Fubini and the non-atomicity of µ. �

DenoteA{±1,0} = {x ∈ R |x is a root of a polynomial with coe�cients in {±1, 0}}.
The rest of the proof goes along the lines of proposition 8.1 in [6]:

Proposition 4.2. Given an interval (a, b) the function λ 7→ µλ (a, b) is continuous
on
(

1
2 , 1
)
\A{±1,0}.

Proof. For a < b:

µλ (a, b) =

ˆ
χ{η |πλ(η)∈(a,b)}dµ

Given a sequence λn → λ where λ ∈
(

1
2 , 1
)
\A{±1,0}, we need to show µλn (a, b)→

µλ (a, b) and in order to do so we will use the dominated convergence theorem. All
we need to show is that the functions:

fn = χ{η |πλn (η)∈(a,b)} : Ω→ R
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converge pointwise µ-a.e. to:

f = χ{η |πλ(η)∈(a,b)}

Fix an ω ∈ Ω and denote the function ϕω (λ) = πλ (ω). This Function is continuous
and thus if ϕω (λ) ∈ (a, b) then there exists an N for which ∀n > N ϕω (λn) ∈ (a, b)
meaning fn (ω) ≡ 1 for all n > N and evidently fn (ω)→ f (ω).
The same argument holds when ϕω (λ) ∈ int (R\ (a, b)). The case where ϕω (λ) =
πλ (ω) ∈ ∂ (a, b) = {a, b} can be avoided since µ ({ω |ϕω (λ) ∈ {a, b}}) = 0 as a
consequence of lemma 4.1 and the assumption λ /∈ A{±1,0}. �

Corollary 4.3. Sµ⊥ =

{
λ ∈

(
1
2 , 1
) ∣∣∣∣µλ is singular

}
is a Gδ set.

Proof. Denote X =
(

1
2 , 1
)
\A{±1,0}. If we show Sµ⊥ ∩X is Gδ with respect to the

induced metric on X we will conclude Sµ⊥ is Gδ, since if:

Sµ⊥ ∩X =
⋂

i

(Ui ∩X)

where Ui are open in R, then:

Sµ⊥ =

(⋂

i

Ui

)⋂

 ⋂

α∈A{±1,0}\S⊥

((
1

2
, α

)
∪ (α, 1)

)


as required (recall A{±1,0} is countable).
Let G be the collection of all �nite unions of open intervals (a, b) ⊆ R. By proposi-
tion 4.2, for any G ∈ G the set

{
λ ∈ X |µλ (G) > 1

2

}
is open in X and thus:

⋂

n

⋃

G∈G
L(G)<2−n

{
λ ∈ X |µλ (G) >

1

2

}

is a Gδ set in X. We will prove:

(4.1) Sµ⊥ ∩X =
⋂

n

⋃

L(G)<2−n

{
λ ∈ X |µλ (G) >

1

2

}

Let λ ∈ Sµ⊥, there exists a set A ⊆ R with µλ (A) = 1 and L (A) = 0. Due to the
properties of Lebesgue measure, for any n there exists a cover by open intervals
{Ui}i∈N of A with

∑∞
i=1 |Ui| < 2−n. On the other hand, there exists a k for which∑k

i=1 µλ (Ui) >
1
2 giving us the required set G = ∪ki=1Ui ∈ G.

Now assume λ is an element of the right hand side of (4.1). For every n denote
Gn ∈ G to be a �nite union of open intervals with L (Gn) < 2−n and µλ (Gn) > 1

2 .
Let A be the limit superior of the sequence Gn:

A =
⋂

n

∞⋃

k=n

Gn

On the one hand, for every n ∈ N A ⊆ ⋃∞k=nGn giving:

L (A) ≤ L
( ∞⋃

k=n

Gn

)
≤
∞∑

k=n

L (Gn) = 2−n+1
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and consequently L (A) = 0. On the other hand, by the reverse Fatou lemma:

µλ (A) =

ˆ
limn→∞χGndµλ ≥ limn→∞

ˆ
χGndµλ = limn→∞µλ (Gn) ≥ 1

2

Using the fact that µλ is of pure type assures λ ∈ Sµ⊥, as required. �

5. Establishing Transversality

5.I. Simple Proof of Transversality. This proof is identical to the one in [7] with
slight changes of notation and terminology. Recall our de�nition of δ-transversality:

De�nition 5.1. Given a set of indices E ⊆ N, we say the interval I ⊆
[

1
2 , 1
]
is

an interval of δ-transversality for the family of functions FE if for any sub-interval
I0 = [λ0, λ1] ⊆ I and all φ ∈ FE and r > 0:

L{x ∈ I0 | |φ (x)| ≤ r} ≤ 2δ−1λ
−∧(φ)
0 r

where ∧
(∑∞

k=0 akx
k
)

= infk (ak 6= 0) ∈ N ∪ {∞}.
Notice that any φ ∈ FE can be presented as:

φ (x) = ±xs · g (x)

where s = ∧ (φ) and g is of the form:

g (x) = 1 +
∑

i∈(Ec−s−1)
0≤i

aix
i

where ai ∈ {±1, 0} and Ec = N\E. In this case we say that g is of the form (E, s).
When E is N0-periodic there are a �nite number of such (E, s)-forms corresponding
to di�erent s ∈ {e ∈ Ec | e < N0}.

Notice that proving that for all s ∈ {e ∈ Ec | e < N0}, all functions of (E, s)-form
satisfy:

(5.1) L{x ∈ I | |g (x)| ≤ r} ≤ 2δ−1r

for some δ > 0 and any r > 0, implies δ-transversality for the whole family FE on
I, since:

L{x ∈ I0 | |φ (x)| ≤ r} ≤ L
{
x ∈ I0 | |g (x)| ≤ λ−s0 r

}
≤

≤ L
{
x ∈ I | |g (x)| ≤ λ−s0 r

}
≤ 2δ−1λ−s0 r

for any I0 ⊆ I.

De�nition 5.2. Let g be a function of (E, s)-form satisfying for all x ∈ I:
g (x) < δ =⇒ g′ (x) < −δ

Then we say g satis�es the δ-transversality condition on I.

Remark. This is the original δ-transversality condition as de�ned in [7].

Lemma 5.3. Let g be a function of (E, s)-form satisfying the δ-transversality con-

dition on I, then g satis�es condition 5.1 for all r > 0.
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Proof. When r ≥ δ the claim is trivially true since:

L{λ ∈ I | |g (x)| ≤ r} ≤ |I| < 2

Given some r < δ, by assumption whenever |g (x)| ≤ r it is monotone decreasing
with slope< −δ so the function g intersects [−r, r] at most once and for time≤ 2δ−1r
as required. �

De�nition 5.4. A power series h (x) is called an (E, s)− (∗)-function if for some
k ≥ 1 and ak ∈ [−1, 1]:

h (x) = 1−




∑

i∈(Ec−s−1)
0≤i≤k−1

xi


+ akx

k +




∑

i∈(Ec−s−1)
k+1≤i

xi




Lemma 5.5. Suppose that an (E, s)− (∗)-function h satis�es:

h (x0) > δ and h′ (x0) < −δ
for some x0 ∈

[
1
2 , 1
]
and δ ∈ (0, 1). Then all functions of (E, s)-form satisfy the

δ-transversality condition on
[

1
2 , x0

]
.

Proof. h′ (0) < −δ, since either h′ (0) = −1 when k > 1 or:

h′ (0) = a1 ≤ a1 +
∑

i∈(Ec−s−1)
2≤i

ixi = h′ (x0) < −δ

when k = 1. Since limx→1 h
′ (x) = ∞, assuming h′ (x) ≥ −δ for some x ∈ [0, x0]

would imply h′′ has at least two zeros in [0, 1) contradicting the fact that h′′ is a
power series with at most one coe�cient sign change. Hence h′ (x) < −δ for all
x ∈ [0, x0]. Adding the fact that h (0) = 1 implies h (x) > δ for all x ∈ [0, x0].

Let g be a power series of form (E, s) and denote f = g − h. By de�nition f is
of the form:

f (x) =
∑

i∈(Ec−s−1)
1≤i≤l

cix
i −

∑

i∈(Ec−s−1)
l+1≤i

cix
i

where l ∈ {k − 1, k} and all ci ≥ 0. Hence for all x ∈ [0, x0]:

g (x) < δ ⇒ f (x) < 0 ⇒ f ′ (x) < 0 ⇒ g′ (x) < −δ
Where the middle implication is a consequence of one coe�cient sign change:

f (x) < 0 ⇒




∑

i∈(Ec−s−1)
1≤i≤l

cix
i


 <




∑

i∈(Ec−s−1)
l+1≤i

cix
i




⇒




∑

i∈(Ec−s−1)
1≤i≤l

ciix
i−1


 <




∑

i∈(Ec−s−1)
l+1≤i

ciix
i−1




⇒ f ′ (x) < 0

�
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So we have reduced the problem of proving δ-transversality for the whole family
FE to a problem of �nding a �nite number (|{e ∈ Ec | e < N0}|) of (∗)-functions
satisfying the conditions of lemma 5.5.

Proposition 5.6.

(1)
[

1
2 , 0.639774

]
is an interval of δ-transversality for the family F .

(2)
[

1
2 , α2

]
is an interval of δ-transversality for the family F{i∈N | i≡0(mod3)},

with α2 = 0.713549.

Proof.

(1) When E = ∅ we only need to check one form of (∅, 0)-functions. The
(∗)-function:

h0 (x) = 1− x− x2 − x3 + 0.08x4 +

∞∑

i=5

xi

satis�es:
h0 (0.639774) > 2 · 10−7

h′0 (0.639774) < −0.2 < −2 · 10−7

proving
[

1
2 , 0.639774

]
is an interval of 2 · 10−7-transversality for F .

(2) For E = {i ∈ N | i ≡ 0 (mod3)} we need to address two forms
(a) (E, 1)-form - The (∗)-function:

h1 (x) = 1− x− x3 − x4 + 0.855x6 + x7 +
x9 + x10

1− x3

satis�es:
h1 (α2) > 2 · 10−9

h′1 (α2) < −0.3 < −2 · 10−9

(b) (E, 2)-form - The (∗)-function:

h2 (x) = 1− x2 − x3 − x5 − 0.5x6 +
x8 + x9

1− x3

satis�es:
h2 (α2) > 0.05

h′2 (α2) < −2 < −0.05

Assuring
[

1
2 , α2

]
is an interval of 2 · 10−9-transversality for the family FE .

�

5.II. Estimation of Double Zeros. In [10] Pablo Shmerkin and Boris Solomyak
extended the interval of transversality for the family F signi�cantly by addressing
the equivalent problem of estimating the minimal double zero attained by a power
series of (∅, 0)-form:

(5.2) 1 +

∞∑

n=1

anx
n an∈{±1,0}

Denote:

X2 = {x ∈ (0, 1) | ∃f of (∅, 0)-form with f (x) = f ′ (x) = 0}
The following result was established:
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Theorem 5.7.

α = minX2 ∈ (0.6684755, 0.6684757)

We will not elaborate on the proof of this theorem but rather prove its relevance
to δ-transversality, as done in [11]:

Lemma 5.8. For all ε > 0 there exists a δ > 0 such that any function g of (∅, 0)-
form satis�es:

∀x ∈ [0, α− ε] |g (x)| < δ ⇒ |g′ (x)| < −δ

Proof. Assume in contradiction an existence of a sequence of numbers xi ∈ [0, α− ε]
and functions gi of (∅, 0)-form satisfying gi (xi) −→

i→∞
0 and g′i (xi) −→

i→∞
0. WLOG

we may assume xi −→
i→∞

x ∈ [0, α− ε] and gi −→
i→∞

g coe�cient by coe�cient. The

function g is also of (∅, 0)-form, but this would mean:

g (x) = lim
i→0

gi (xi) = 0

g′ (x) = lim
i→0

g′i (xi) = 0

where x < α in contradiction to the de�nition of α. �

In particular, there exists a δ for which all g of (∅, 0)-form receiving values in
(−δ, δ) somewhere along the interval

[
1
2 , α1

]
, for α1 = 0.668475, do so with slope

greater than δ (in absolute value). As shown in lemma 5.3, this implies that for
any r < δ < 1, each interval in g−1 ((−r, r)) is of length≤ 2δ−1r.
In order to deduce a condition of the sort:

L
{
x ∈

[
1

2
, α1

]
| |g (x)| ≤ r

}
≤ Cδ−1r

one only needs to give a bound on the number of intervals in g−1 ((−δ, δ)):

Lemma 5.9. There exists a constant C such that for all g of (∅, 0)-form, U =
g−1 ((−δ, δ)) is a union of at most C intervals.

Proof. For all x ∈ (0, 1):

|g′ (x)| ≤
∞∑

i=0

ixi−1 =
1

(1− x)
2 ≤

1

(1− α1)
2

Every interval J ⊆ U admits g (J) = (−δ, δ), since g is monotone on J and g (0) =

1 > δ. Therefore |J | ≥ 2δ (1− α1)
2
. The fact that L (U) ≤ 1 assures the required

constant is C = b 1
2δ(1−α1)2 c. �

Corollary 5.10.
[

1
2 , α1

]
is an interval of C−1δ-transversality for the family F .
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6. Appendix

6.I. Full Proof of Pure Type Using the Density Function. We denote the
α-dimensional Hausdor� measure on R by Hα. We prove the following:

Proposition 6.1. For any σ-ergodic measure µ and any λ ∈ (0, 1), the measure

µλ is of pure type with respect to Hα, i.e. either µλ � Hα or µλ ⊥ Hα.

Remark. We interpret µλ � Hα as the property that for any set E ⊆ R:

Hα (E) = 0⇒ µλ (E) = 0

and µλ ⊥ Hα as the existence of a set E′ ⊆ R for which µλ (R\E′) = 0 and
Hα (E′) = 0.

De�nition. The upper α-dimensional density of a measure ν at x ∈ Rd is:

D+
α (ν, x) = lim sup

r→0

ν (Br(x))

(2r)
α

where Br (x) is the closed ball of radius r around x.

Denote:

Aα∞ =

{
ω ∈ Ω

∣∣∣∣D+
α (µλ, πλ (ω)) <∞

}
= π−1

λ ◦
(
D+
α

)−1
([0,∞))

Lemma 6.2. D+
α (µ, ·) is measurable.

Proof. First we notice that
µ (Br(x))

(2r)
α is right-continuous with respect to r, since µ

is �nite and lims↘r Bs (x) = Br (x). This allows us to restrict the limit to r ↘ 0

along the rationals. Second, for each r > 0 the function Dr
α (x) =

µ (Br(x))

(2r)
α is

upper semi-continuous with respect to x and thus measurable. This is seen by

noticing that for any s > r and xn → x we have Br(xn) ⊆ Bs(x) for large enough

n, which implies Dr
α(xn) ≤ µ (Bs(x))

(2r)
α . But since µ (Bs(x)) is right-continuous with

respect to s, taking s↘ r and a lim supn→∞ gives:

lim sup
n→∞

Dr
α(xn) ≤ Dr

α(x)

as required. Hence we see that D+
α is a limsup of a sequence of measurable functions

and thus is itself measurable.

�

This show Aα∞ is measurable.
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Proposition 6.3. Aα∞ is σ-invariant in Ω up to a µ-null set.

Proof. We will begin by pointing out a few identities.

Since µ = σµ and µ = µ|[1] + µ|[−1] we get µ = σµ|[1] + σµ|[−1] and thus:

(6.1) µλ = πλµ = πλσµ|[1] + πλσµ|[−1]

We notice that for any measurable set E ⊆ R we have:

(6.2) πλσµ|[1] (E) = µ|[1]

(
σ−1

(
π−1
λ E

))
= µ|[1]

(
σ−1

(
π−1
λ E

)
∩ [1]

)
=

= µ|[1]

(
π−1
λ (ϕ+E) ∩ [1]

)
= µ|[1]

(
π−1
λ (ϕ+E)

)
= πλµ|[1] (ϕ+E)

where the crucial equality is given by the fact that for all F ⊆ Ω:

σ−1F ∩ [1] =

{
1ω = (1ω0ω1...)

∣∣∣∣ω = (ω0ω1...) ∈ F
}

hence πλ
(
σ−1F ∩ [1]

)
= ϕ+ (πλF ). A similar identity holds for [−1]. If we denote

µ±λ = πλµ|[±1] we receive from 6.1+6.2 the following identity:

(6.3) µλ = ϕ−1
+ µ+

λ + ϕ−1
− µ−λ

Remark. Notice this identity is not equivalent to self-similarity, i.e.σ-invariance does
not imply self-similarity of the projected measure.

This shows that for µ-a.e. ω ∈ Ω and every r > 0 we have:

µ (Br (πλω)) = ϕ−1
+ µ+

λ (Br (πλω)) + ϕ−1
− µ−λ (Br (πλω)) =

= µ+
λ (ϕ+Br (πλω)) + µ−λ (ϕ−Br (πλω)) =

= µ+
λ (Bλr (πλ(1ω))) + µ−λ (Bλr (πλ(−1ω)))

Dividing by (2r)
α
we receive:

µ (Br (πλω))

(2r)
α ≥ µ±λ (Bλr (πλ(±1ω)))

(2r)
α = λα

µ±λ (Bλr (πλ(±1ω)))

(2λr)
α

Taking limsup-s gives:

(6.4) D+
α (µ, πλω) ≥ λα ·D+

α

(
µ±λ , πλ(±1ω)

)

Now since µ and µ±λ are all �nite measures we can use Lebesgue's decomposi-

tion theorem to decompose µλ = ν±ac + ν±s with respect to µ±λ . Since µ+
λ⊥ν+s

and µ−λ⊥ν−s there exist two measurable sets C+ and C− for which µ±λ (R\C±) =
ν±ac (R\C±) = 0 and ν±s (C±) = 0. This gives µλ|C± = ν±ac. We also notice
R =
µλ
C+ ∪ C−, otherwise there would be a set E ⊆ R\ (C+ ∪ C−) with µλ (E) > 0

such that µλ|E⊥µ+
λ and µλ|E⊥µ−λ in contradiction to the fact that µλ = µ+

λ + µ−λ .
Hence WLOG we may assume that R = C+ ∪ C− (strict equality).
If we were to assume that µλ (C−) = 0 we would get µ−λ (C−) = 0 and consequently

µ−λ ≡ 0. But this would mean that µ ([−1]) = 0 and thus that µ ([1]) = 1 which

would in turn imply µ
(
σ−1 [1] ∩ [1]

)
= µ ([11]) = 1 and so forth, meaning µ ≡ δ11....
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In this case D+
α (πλδ11..., ·) ≡ 0 rendering the proposition trivial. The same happens

when assuming µλ (C+) = 0. Therefore we may assume from now on that both C±
are of positive measure.
We will notice in addition that [1] ⊆

µ
π−1
λ C+ and [−1] ⊆

µ
π−1
λ C−, since if µ

(
[1] \π−1

λ C+

)
>

0 then µ|[1]

(
[1] \π−1

λ C+

)
> 0 and by de�nition µ+

λ

(
πλ
(
[1] \π−1

λ C+

))
> 0. But this

would mean that µ+
λ (R\C+) > 0 in contradiction to the de�nition of C+. Similarly

for C−.

We denote f± =
dv±ac
dµ±λ

the Radon derivatives and choose them to take values only

in [0,∞) .9

By Besicovitch's density theorem, since µλ is a probability measure on R and
µλ (C±) > 0 we have:

lim
r→0

µλ (Br (x) ∩ C±)

µλ (Br (x))
= 1

for µλ-a.e. x ∈ C±. Now since µλ|C± = ν±ac we can use the di�erentiation theorem
(see 2.14 in [5]) to receive:

lim
r→0

µλ (Br (x) ∩ C±)

µ±λ (Br (x))
= f± (x)

for µλ-a.e. x ∈ C±.
This gives us for µ-a.e. ω ∈ Ω, πλ (±1ω) ∈ C± and:

lim
r→0

µλ (Br (πλ (±1ω)))

µ±λ (Br (πλ (±1ω)))
= lim
r→0

(
µλ (Br (πλ (±1ω)))

µ±λ (Br (πλ (±1ω)))
· µλ (Br (πλ (±1ω)) ∩ C±)

µλ (Br (πλ (±1ω)))

)
=

= lim
r→0

µλ (Br (πλ (±1ω)) ∩ C±)

µ±λ (Br (πλ (±1ω)))
= f± (πλ (±1ω))

On the other hand, for µ+
λ -a.e. x ∈ R we have x ∈ supp

(
µ+
λ

)
and thus:

µλ (Br (x))

µ+
λ (Br (x))

=
µ−λ (Br (x)) + µ+

λ (Br (x))

µ+
λ (Br (x))

≥ µ+
λ (Br (x))

µ+
λ (Br (x))

= 1

where we used the fact that:

x ∈ supp (µ+) =⇒ ∀r > 0 µ+
λ (Br (x)) > 0

Similarly for µ−λ -a.e. x ∈ R. This amounts to the fact that for µ-a.e. ω ∈ Ω:

lim
r→0

µλ (Br (πλ (±1ω)))

µ±λ (Br (πλ (±1ω)))
= f± (πλ (±1ω)) ∈ [1,∞)

So for µ-a.e. ω ∈ Ω:

f± (πλ (±1ω)) ·D+
α

(
µ±λ , πλ (±1ω)

)
= f± (πλ (±1ω)) · lim sup

r→0

µ±λ (Br(πλ (±1ω)))

(2r)
α =

= lim sup
r→0

(
µ±λ (Br(πλ (±1ω)))

(2r)
α · µλ (Br (πλ (±1ω)))

µ±λ (Br (πλ (±1ω)))

)
=

= lim sup
r→0

µλ (Br(πλ (±1ω)))

(2r)
α = D+

α (µλ, πλ (±1ω))

9These can only receive the value ∞ at a µ±λ -null set at most (see theorem 2.12 in [5])
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Leaving us with:

(6.5) D+
α

(
µ±λ , πλ (±1ω)

)
=

1

f± (πλ (±1ω))
D+
α (µλ, πλ (±1ω))

where 1
f±(x) > 0.

Taking (6.4) and 6.5 we conclude that for µ-a.e. ω ∈ Ω:

D+
α (µλ, πλω) ≥ λα ·D+

α

(
µ±λ , πλ(±1ω)

)
=

λα

f± (πλ (±1ω))
·D+

α (µλ, πλ(±1ω))

and consequently for µ-a.e. ω ∈ Aα∞, D+
α (µλ, πλ(±1ω)) < ∞ or ±1ω ∈ Aα∞

amounting to σ−1 (Aα∞) =
µ
Aα∞ as required. �

Recall the following result from geometric measure theory (see 6.31 in [4]):

Theorem 6.4. Let ν be a �nite measure on Rd and A ⊆ Rd. Then:

(6.6) ∀x ∈ A, D+
α (ν, x) > s =⇒ Hα (A) ≤ C

s
· ν (A)

where C is a constant depending only on d. And:

(6.7) ∀x ∈ A, D+
α (ν, x) < t =⇒ Hα (A) ≥ 1

2αt
· ν (A)

Proposition 6.5. For any α ≥ 0 either µλ � Hα or µλ⊥Hα.

Proof. The set Aα∞ is measurable admitting σ−1 (Aα∞) =
µ
Aα∞ while µ is σ-ergodic

hence µ (Aα∞) ∈ {0, 1}. We will view the two cases:

If µ (Aα∞) = 0, we know that for all x ∈ πλ (Ω\Aα∞), D+
α (µλ, x) = ∞ and in

particular D+
α (µ, x) > s for any s > 0. Using (6.6) we deduce that for any s,

Hα (πλ (Ω\Aα∞)) ≤ C
s · µλ (πλ (Ω\Aα∞)) thus leading to Hα (πλ (Ω\Aα∞)) = 0 while

µλ (R\πλ (Ω\Aα∞)) = µ (Aα∞) = 0 and by de�nition µλ⊥Hα.
If on the other hand µ (Aα∞) = 1, then we denote for each 1 ≤ n ∈ N:

Aαn =

{
ω ∈ Ω

∣∣∣∣D+
α (µλ, πλ (ω)) < n

}

Clearly Aα∞ =
⋃∞
n=1A

α
n and limn→∞ µ (Aαn) = µ (Aα∞) = 1. Let E ⊆ R be a set

withHα (E) = 0. For every ε > 0 there exists an n for which µ
(
π−1
λ E\Aαn

)
< ε. We

denote En = E ∩ πλAαn and recall that for all x ∈ En, D+
α (µλ, x) < n. Therefore

by (6.7) we receive:

µλ (En) ≤ sαn · Hα (En) ≤ sαn · Hα (E) = 0

This in turn implies:

µλ (E) = µλ (E\En) = µ
(
π−1
λ E\Aαn

)
< ε
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Since this is true for any ε > 0 we conclude that Hα (E) = 0 =⇒ µλ (E) = 0 or

µλ � Hα as required.

�

6.II. Proof of Measurability - Dµ (λ, ω, τ).

Lemma 6.6. The function Dµ (λ, ω, τ) : Ih × Ω× Ω→ R+ ∪ {∞} is measurable.

Proof. We will decompose Dµ (λ, ω, τ) and thus reduce the claim to a much simpler
one. First we notice that for all s > 0 and rn ↘ s Brn (x)→ Bs (x) and:

1

2rn
µAE ,ω
λ (Brn (x))→ 1

2s
µAE ,ω
λ (Bs (x))

Therefore:

Dµ (λ, ω, τ) = lim inf
q→0

q∈Q∩(0,1)

1

2q
µAE ,ω
λ (Bq (πλτ))

Taking lim inf preserves measurability hence we can reduce to proving the sequence
of functions:

Dq
µ (λ, ω, τ) = µAE ,ω

λ (Bq (πλτ)) = µAE
ω

(
π−1
λ (Bq (πλτ))

)

for q ∈ Q ∩ (0, 1) is measurable. By the increasing Martingale theorem, for any
B ∈ A :

µAE
ω (B) = lim

n→∞

µ
(
B ∩ [ω]AE∩An

)

µ
(
[ω]AE∩An

)

since AE ∩An ↗ AE . Hence we can reduce once more to proving the functions:

Dq,n
µ (λ, ω, τ) =

∑

A∈AE∩An
µ(A)>0

χA (ω)
µ
(
π−1
λ (Bq (πλτ)) ∩A

)

µ (A)

It would su�ce to show that given an A ∈ AE ∩An with µ (A) > 0 the function:

Dq,A
µ (λ, τ) = µ|A

(
π−1
λ (Bq (πλτ))

)
=

ˆ
χπ−1

λ (Bq(πλτ)∩πλ(A)) (τ ′) dµ (τ ′)

is measurable.
Notice that for all λ, τ the set Bq (πλτ) ∩ πλ (A) is a �nite union of intervals. Due
to the continuity of πλ, given a converging sequence (λn, τn)→ (λ0, τ0), the set:
(

lim
n→∞

(Bq (πλnτn) ∩ πλn (A))
)

∆ (Bq (πλ0τ0) ∩ πλ0 (A)) ⊆ ∂ (Bq (πλ0τ0) ∩ πλ0 (A))

is �nite.
Using lemma 4.1, whenever λ0 /∈ A{±1,0}:

µ
(
π−1
λ0

(∂ (Bq (πλ0
τ) ∩ πλ0

(A)))
)

= 0

meaning χπ−1
λn

(Bq(πλnτn)∩πλn (A)) converges pointwise µ-a.e. to χπ−1
λ0

(Bq(πλ0
τ0)∩πλ0

(A))
and thus by dominated convergence:ˆ

χπ−1
λn

(Bq(πλnτn)∩πλn (A))dµ→
ˆ
χπ−1

λ0
(Bq(πλ0

τ0)∩πλ0
(A))dµ

This proves Dq,A
µ

∣∣∣∣
(( 1

2 ,1)\A{±1,0})×{±1}N
is continuous. Having L

(
A{±1,0}

)
= 0 con-

cludes the proof. �



ON BERNOULLI CONVOLUTIONS AND THE PROJECTION OF ERGODIC MEASURES 26

References

1. Tomasz Downarowicz, Entropy in dynamical systems, NewMathematical Monographs, vol. 18,
Cambridge University Press, Cambridge, 2011. MR 2809170 (2012k:37001)

2. Manfred Einsiedler and Thomas Ward, Ergodic theory with a view towards number the-
ory, Graduate Texts in Mathematics, vol. 259, Springer-Verlag London Ltd., London, 2011.
MR 2723325 (2012d:37016)

3. M. Hochman, On self-similar sets with overlaps and inverse theorems for entropy, ArXiv
e-prints (2012).

4. Michael Hochman, Fractal geometry and dynamics - course notes,
http://math.huji.ac.il/ mhochman/courses/fractals-2012/course-notes.june-26.pdf.

5. Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in
Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995, Fractals and
recti�ability. MR 1333890 (96h:28006)

6. Yuval Peres, Wilhelm Schlag, and Boris Solomyak, Sixty years of Bernoulli convolutions,
Fractal geometry and stochastics, II (Greifswald/Koserow, 1998), Progr. Probab., vol. 46,
Birkhäuser, Basel, 2000, pp. 39�65. MR 1785620 (2001m:42020)

7. Yuval Peres and Boris Solomyak, Absolute continuity of Bernoulli convolutions, a simple
proof, Math. Res. Lett. 3 (1996), no. 2, 231�239. MR 1386842 (97f:28006)

8. Yuval Peres and Boris Solomyak, Self-similar measures and intersections of Cantor sets,
Trans. Amer. Math. Soc. 350 (1998), no. 10, 4065�4087. MR 1491873 (98m:26009)

9. P. Shmerkin, On the exceptional set for absolute continuity of Bernoulli convolutions, ArXiv
e-prints (2013).

10. Pablo Shmerkin and Boris Solomyak, Zeros of {−1, 0, 1} power series and connectedness loci
for self-a�ne sets, Experiment. Math. 15 (2006), no. 4, 499�511. MR 2293600 (2007k:30003)

11. Boris Solomyak, On the random series
∑
±λn (an Erd®s problem), Ann. of Math. (2) 142

(1995), no. 3, 611�625. MR 1356783 (97d:11125)
12. Boris Solomyak, Notes on Bernoulli convolutions, Fractal geometry and applications: a ju-

bilee of Benoît Mandelbrot. Part 1, Proc. Sympos. Pure Math., vol. 72, Amer. Math. Soc.,
Providence, RI, 2004, pp. 207�230. MR 2112107 (2005i:26026)

13. Thomas Ward, Manfred Einsiedler, and Elon Lindenstrauss, Entropy in dynamics,
http://maths.dur.ac.uk/ tpcc68/entropy/welcome.html.


